基于独立水平集和多支持向量机的宫颈癌检测与分类

Debashree Kashyap, Abhishek Somani, Jatin Shekhar, Anupama Bhan, M. Dutta, Radim Burget, K. Říha
{"title":"基于独立水平集和多支持向量机的宫颈癌检测与分类","authors":"Debashree Kashyap, Abhishek Somani, Jatin Shekhar, Anupama Bhan, M. Dutta, Radim Burget, K. Říha","doi":"10.1109/TSP.2016.7760935","DOIUrl":null,"url":null,"abstract":"Introduced in 1940, Pap smear test has proven to be an effective screening method to determine the different stages of cervical cancer. Identification and classification of Pap smear images to detect cervical cancer via manual screening is a challenging task for pathologists therefore increasing the chances of human error. In this paper, we propose an automatic method to detect and classify the grade of cervical cancer using both geometric and texture features of Pap smear images and classifying accordingly using multi SVM. The geometric features are obtained through segmentation of nucleus and cytoplasm using independent level sets, detecting whether the cell is cancerous or normal, with reference to the ground truth. By extracting well defined GLCM texture features and using a combination of PCA and the best class of multi SVM, the images are classified with an accuracy of 95%.","PeriodicalId":159773,"journal":{"name":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Cervical cancer detection and classification using Independent Level sets and multi SVMs\",\"authors\":\"Debashree Kashyap, Abhishek Somani, Jatin Shekhar, Anupama Bhan, M. Dutta, Radim Burget, K. Říha\",\"doi\":\"10.1109/TSP.2016.7760935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduced in 1940, Pap smear test has proven to be an effective screening method to determine the different stages of cervical cancer. Identification and classification of Pap smear images to detect cervical cancer via manual screening is a challenging task for pathologists therefore increasing the chances of human error. In this paper, we propose an automatic method to detect and classify the grade of cervical cancer using both geometric and texture features of Pap smear images and classifying accordingly using multi SVM. The geometric features are obtained through segmentation of nucleus and cytoplasm using independent level sets, detecting whether the cell is cancerous or normal, with reference to the ground truth. By extracting well defined GLCM texture features and using a combination of PCA and the best class of multi SVM, the images are classified with an accuracy of 95%.\",\"PeriodicalId\":159773,\"journal\":{\"name\":\"2016 39th International Conference on Telecommunications and Signal Processing (TSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 39th International Conference on Telecommunications and Signal Processing (TSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSP.2016.7760935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2016.7760935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

巴氏涂片检查于1940年推出,是一种有效的筛查方法,可确定子宫颈癌的不同阶段。通过人工筛查对子宫颈抹片图像进行识别和分类以检测宫颈癌对病理学家来说是一项具有挑战性的任务,因此增加了人为错误的机会。本文提出了一种利用巴氏涂片图像的几何和纹理特征,并利用多支持向量机进行分类的宫颈癌等级自动检测和分类方法。几何特征是通过使用独立水平集分割细胞核和细胞质获得的,检测细胞是癌变还是正常,并参考ground truth。通过提取定义良好的GLCM纹理特征,将PCA与最佳的多支持向量机分类相结合,对图像进行分类,准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cervical cancer detection and classification using Independent Level sets and multi SVMs
Introduced in 1940, Pap smear test has proven to be an effective screening method to determine the different stages of cervical cancer. Identification and classification of Pap smear images to detect cervical cancer via manual screening is a challenging task for pathologists therefore increasing the chances of human error. In this paper, we propose an automatic method to detect and classify the grade of cervical cancer using both geometric and texture features of Pap smear images and classifying accordingly using multi SVM. The geometric features are obtained through segmentation of nucleus and cytoplasm using independent level sets, detecting whether the cell is cancerous or normal, with reference to the ground truth. By extracting well defined GLCM texture features and using a combination of PCA and the best class of multi SVM, the images are classified with an accuracy of 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信