{"title":"mv -代数的张量pmv -代数","authors":"I. Leustean","doi":"10.1109/ISMVL.2011.37","DOIUrl":null,"url":null,"abstract":"The classical construction of tensor algebra is done in the context of MV-algebras. We construct the tensor PMV-algebra of an MV-algebra, which yields an adjunction between the category of MV-algebras and the category of PMV-algebras. In particular, for any MV-algebra A, the tensor PMV-algebra of A is the free PMV-algebra over A.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Tensor PMV-algebra of an MV-algebra\",\"authors\":\"I. Leustean\",\"doi\":\"10.1109/ISMVL.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical construction of tensor algebra is done in the context of MV-algebras. We construct the tensor PMV-algebra of an MV-algebra, which yields an adjunction between the category of MV-algebras and the category of PMV-algebras. In particular, for any MV-algebra A, the tensor PMV-algebra of A is the free PMV-algebra over A.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The classical construction of tensor algebra is done in the context of MV-algebras. We construct the tensor PMV-algebra of an MV-algebra, which yields an adjunction between the category of MV-algebras and the category of PMV-algebras. In particular, for any MV-algebra A, the tensor PMV-algebra of A is the free PMV-algebra over A.