层状介质中埋藏界面的软x射线研究

N. Mahne, A. Giglia, L. Sponza, A. Verna, S. Nannarone
{"title":"层状介质中埋藏界面的软x射线研究","authors":"N. Mahne, A. Giglia, L. Sponza, A. Verna, S. Nannarone","doi":"10.1117/12.888179","DOIUrl":null,"url":null,"abstract":"The performance of multilayer optics depends on the quality of the buried interfaces between materials, whose intermixing strongly affects their behavior. We present an experimental method to determine, in a non destructively way, the amount of material intermixing at interfaces of multilayer structures. The reflection mechanism is related to the build up in the multilayer of a standing wave field, whose peaks and the valleys move as a function both of wavelength and of incidence angle. Exploiting this fact it is possible to modulate the electric field inside the multilayer in order to have different parts of the multilayer structure excited at a different extent and in particular the buried interfaces regions. The excitation is directly proportional to the intensity of the electric field and to the concentration of a given element in the sample. The excitation can be detected with different techniques, f.i. electron core level photoemission, fluorescence, luminescence, total electron yield. The flexibility of the experimental apparatus of the BEAR beamline (Elettra Trieste, Italy) allowed us to study some important classes of layered structures in the soft X-ray energy range, using the above mentioned techniques together with the determination of the Bragg conditions through the measurement of the specular reflectivity. We demonstrate the possibility of obtaining quantitative information on the width of the intermixing region, strongly related to the interface roughness, through the comparison with a phenomenological model of the intermixing and a numerical simulation of the standing field inside the multilayer.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Soft-X study of buried interfaces in stratified media\",\"authors\":\"N. Mahne, A. Giglia, L. Sponza, A. Verna, S. Nannarone\",\"doi\":\"10.1117/12.888179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of multilayer optics depends on the quality of the buried interfaces between materials, whose intermixing strongly affects their behavior. We present an experimental method to determine, in a non destructively way, the amount of material intermixing at interfaces of multilayer structures. The reflection mechanism is related to the build up in the multilayer of a standing wave field, whose peaks and the valleys move as a function both of wavelength and of incidence angle. Exploiting this fact it is possible to modulate the electric field inside the multilayer in order to have different parts of the multilayer structure excited at a different extent and in particular the buried interfaces regions. The excitation is directly proportional to the intensity of the electric field and to the concentration of a given element in the sample. The excitation can be detected with different techniques, f.i. electron core level photoemission, fluorescence, luminescence, total electron yield. The flexibility of the experimental apparatus of the BEAR beamline (Elettra Trieste, Italy) allowed us to study some important classes of layered structures in the soft X-ray energy range, using the above mentioned techniques together with the determination of the Bragg conditions through the measurement of the specular reflectivity. We demonstrate the possibility of obtaining quantitative information on the width of the intermixing region, strongly related to the interface roughness, through the comparison with a phenomenological model of the intermixing and a numerical simulation of the standing field inside the multilayer.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.888179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.888179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多层光学系统的性能取决于材料之间埋藏界面的质量,而材料之间的混合会严重影响其性能。我们提出了一种实验方法,以一种非破坏性的方式来确定多层结构界面处的材料混合量。反射机制与多层驻波场的堆积有关,驻波场的波峰和波谷随波长和入射角的变化而变化。利用这一事实,可以调制多层结构内部的电场,以使多层结构的不同部分,特别是埋藏的界面区域受到不同程度的激发。激发与电场强度和样品中给定元素的浓度成正比。激发可以用不同的技术来检测,即电子核能级,光电发射,荧光,发光,总电子产额。BEAR光束线实验装置(Elettra Trieste,意大利)的灵活性使我们能够在软x射线能量范围内研究一些重要的层状结构,使用上述技术以及通过测量镜面反射率来确定Bragg条件。通过与混合现象模型的比较和多层内静场的数值模拟,我们证明了获得与界面粗糙度密切相关的混合区域宽度的定量信息的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft-X study of buried interfaces in stratified media
The performance of multilayer optics depends on the quality of the buried interfaces between materials, whose intermixing strongly affects their behavior. We present an experimental method to determine, in a non destructively way, the amount of material intermixing at interfaces of multilayer structures. The reflection mechanism is related to the build up in the multilayer of a standing wave field, whose peaks and the valleys move as a function both of wavelength and of incidence angle. Exploiting this fact it is possible to modulate the electric field inside the multilayer in order to have different parts of the multilayer structure excited at a different extent and in particular the buried interfaces regions. The excitation is directly proportional to the intensity of the electric field and to the concentration of a given element in the sample. The excitation can be detected with different techniques, f.i. electron core level photoemission, fluorescence, luminescence, total electron yield. The flexibility of the experimental apparatus of the BEAR beamline (Elettra Trieste, Italy) allowed us to study some important classes of layered structures in the soft X-ray energy range, using the above mentioned techniques together with the determination of the Bragg conditions through the measurement of the specular reflectivity. We demonstrate the possibility of obtaining quantitative information on the width of the intermixing region, strongly related to the interface roughness, through the comparison with a phenomenological model of the intermixing and a numerical simulation of the standing field inside the multilayer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信