改进的离散小波分析和主成分分析在脑电信号处理中的应用

Yi-Hsiang Chen, Xiaoxin Cui, Kanglin Xiao, Dunshan Yu
{"title":"改进的离散小波分析和主成分分析在脑电信号处理中的应用","authors":"Yi-Hsiang Chen, Xiaoxin Cui, Kanglin Xiao, Dunshan Yu","doi":"10.1109/ASICON47005.2019.8983523","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) has significant applications on medical diagnosis and Brain Computer Interface (BCI). But the main obstacle of analyzing EEG signal is various types of noises to get actual information. Extracting important features is a key issue in this study. This paper uses the BCI Competition IV 2b motion imagery data, in which we provide a review of various prior art to determine the motion imaginary MI mission. Using machine learning to identify two different movements in the EEG signal, the data from nine subjects were analyzed by principal component analysis (PCA) combined with discrete wavelet (DWT) packet analysis. The extracted DWT feature is input into the support vector machine (SVM) classifier, and the experimental results shows that this method is better than traditional methods with a classification accuracy rate of 86.7%.","PeriodicalId":319342,"journal":{"name":"2019 IEEE 13th International Conference on ASIC (ASICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Discrete Wavelet Analysis and Principal Component Analysis for EEG Signal Processing\",\"authors\":\"Yi-Hsiang Chen, Xiaoxin Cui, Kanglin Xiao, Dunshan Yu\",\"doi\":\"10.1109/ASICON47005.2019.8983523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalogram (EEG) has significant applications on medical diagnosis and Brain Computer Interface (BCI). But the main obstacle of analyzing EEG signal is various types of noises to get actual information. Extracting important features is a key issue in this study. This paper uses the BCI Competition IV 2b motion imagery data, in which we provide a review of various prior art to determine the motion imaginary MI mission. Using machine learning to identify two different movements in the EEG signal, the data from nine subjects were analyzed by principal component analysis (PCA) combined with discrete wavelet (DWT) packet analysis. The extracted DWT feature is input into the support vector machine (SVM) classifier, and the experimental results shows that this method is better than traditional methods with a classification accuracy rate of 86.7%.\",\"PeriodicalId\":319342,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on ASIC (ASICON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on ASIC (ASICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON47005.2019.8983523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON47005.2019.8983523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑电图(EEG)在医学诊断和脑机接口(BCI)方面有着重要的应用。但是对脑电信号进行分析的主要障碍是各种各样的噪声,难以获得真实的信息。提取重要特征是本研究的关键问题。本文使用BCI Competition IV 2b运动图像数据,其中我们提供了各种现有技术的回顾,以确定运动想象的MI任务。采用机器学习识别脑电信号中的两种不同运动,并结合主成分分析(PCA)和离散小波包分析(DWT)对9名受试者的数据进行分析。将提取的DWT特征输入到支持向量机(SVM)分类器中,实验结果表明,该方法的分类准确率达到86.7%,优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Discrete Wavelet Analysis and Principal Component Analysis for EEG Signal Processing
Electroencephalogram (EEG) has significant applications on medical diagnosis and Brain Computer Interface (BCI). But the main obstacle of analyzing EEG signal is various types of noises to get actual information. Extracting important features is a key issue in this study. This paper uses the BCI Competition IV 2b motion imagery data, in which we provide a review of various prior art to determine the motion imaginary MI mission. Using machine learning to identify two different movements in the EEG signal, the data from nine subjects were analyzed by principal component analysis (PCA) combined with discrete wavelet (DWT) packet analysis. The extracted DWT feature is input into the support vector machine (SVM) classifier, and the experimental results shows that this method is better than traditional methods with a classification accuracy rate of 86.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信