采用多核处理器对三维点云配准进行并行化处理

Jorge L. Martínez, A. Reina, J. Morales, A. Mandow, A. García-Cerezo
{"title":"采用多核处理器对三维点云配准进行并行化处理","authors":"Jorge L. Martínez, A. Reina, J. Morales, A. Mandow, A. García-Cerezo","doi":"10.1109/ICMECH.2013.6518558","DOIUrl":null,"url":null,"abstract":"This paper pursues speeding up 3D point cloud matching, which is crucial for mobile robotics. In previous work, we devised the Coarse Binary Cubes (CBC) method for fast and accurate registration of 3D scenes based on an integer objective function. Instead of point distance calculations, the method optimizes the number of coincident binary cubes between a pair of range images. In this paper, we propose taking advantage of widespread multicore and multithreaded processors to further speed-up CBC by parallel evaluation of prospective solutions in a globalized Nelder-Mead search. A performance analysis on two types of multicore processors is offered for indoor and outdoor scans from a 3D laser rangefinder. The proposed solution achieves a computational time gain close to the number of physical cores.","PeriodicalId":448152,"journal":{"name":"2013 IEEE International Conference on Mechatronics (ICM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using multicore processors to parallelize 3D point cloud registration with the Coarse Binary Cubes method\",\"authors\":\"Jorge L. Martínez, A. Reina, J. Morales, A. Mandow, A. García-Cerezo\",\"doi\":\"10.1109/ICMECH.2013.6518558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper pursues speeding up 3D point cloud matching, which is crucial for mobile robotics. In previous work, we devised the Coarse Binary Cubes (CBC) method for fast and accurate registration of 3D scenes based on an integer objective function. Instead of point distance calculations, the method optimizes the number of coincident binary cubes between a pair of range images. In this paper, we propose taking advantage of widespread multicore and multithreaded processors to further speed-up CBC by parallel evaluation of prospective solutions in a globalized Nelder-Mead search. A performance analysis on two types of multicore processors is offered for indoor and outdoor scans from a 3D laser rangefinder. The proposed solution achieves a computational time gain close to the number of physical cores.\",\"PeriodicalId\":448152,\"journal\":{\"name\":\"2013 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECH.2013.6518558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2013.6518558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

三维点云匹配是移动机器人的关键技术,本文的研究方向是加速三维点云匹配。在之前的工作中,我们设计了基于整数目标函数的粗糙二值立方(CBC)方法来快速准确地配准3D场景。该方法不需要计算点距离,而是优化一对距离图像之间的一致二值立方体的数量。在本文中,我们建议利用广泛的多核和多线程处理器,通过在全球化的Nelder-Mead搜索中并行评估潜在解决方案来进一步加速CBC。对两种类型的多核处理器的性能分析提供了室内和室外扫描从3D激光测距仪。提出的解决方案实现了接近物理内核数量的计算时间增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using multicore processors to parallelize 3D point cloud registration with the Coarse Binary Cubes method
This paper pursues speeding up 3D point cloud matching, which is crucial for mobile robotics. In previous work, we devised the Coarse Binary Cubes (CBC) method for fast and accurate registration of 3D scenes based on an integer objective function. Instead of point distance calculations, the method optimizes the number of coincident binary cubes between a pair of range images. In this paper, we propose taking advantage of widespread multicore and multithreaded processors to further speed-up CBC by parallel evaluation of prospective solutions in a globalized Nelder-Mead search. A performance analysis on two types of multicore processors is offered for indoor and outdoor scans from a 3D laser rangefinder. The proposed solution achieves a computational time gain close to the number of physical cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信