可变性对功率的影响

S. Nassif
{"title":"可变性对功率的影响","authors":"S. Nassif","doi":"10.1145/1013235.1013241","DOIUrl":null,"url":null,"abstract":"Summary form only given. The integrated circuit manufacturing process has inevitable imperfections and fluctuations that result in ever-growing systematic and random variations in the electrical parameters of active and passive devices fabricated. The impact of such variations on various aspects of chip performance has been the subject of numerous papers, and techniques for analyzing and dealing with such variability, broadly labelled design for manufacturability, are emerging as the next hot topic in this area. The focus of much of the current work in this area has been on timing, but it is well known that modern integrated circuits are very heavily power limited and that static and dynamic power have emerged as first class design objectives. In this paper, we review the various sources of process variability, and relate them to variability in the various parts of the power delivery subsystem. Specifically, we address variability in the following areas: 1. static (leakage) power; 2. dynamic power; 3. on-chip power grid; 4. on-chip decoupling capacitance; 5. package power grid; 6. workload. It is important to model all these sources of variability with the correct balance of effort and accuracy, thus it is important to get broad bounds on each of the sources in order to insure that the appropriate level of modeling and analysis investment is made in order to bound or worst-case each component without undue pessimism. It is also important to have a first order understanding of the technology trends in each of these sources of variability. This will allow the designer and CAD tool developer to anticipate future problem areas and plan work arounds as needed.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The impact of variability on power\",\"authors\":\"S. Nassif\",\"doi\":\"10.1145/1013235.1013241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The integrated circuit manufacturing process has inevitable imperfections and fluctuations that result in ever-growing systematic and random variations in the electrical parameters of active and passive devices fabricated. The impact of such variations on various aspects of chip performance has been the subject of numerous papers, and techniques for analyzing and dealing with such variability, broadly labelled design for manufacturability, are emerging as the next hot topic in this area. The focus of much of the current work in this area has been on timing, but it is well known that modern integrated circuits are very heavily power limited and that static and dynamic power have emerged as first class design objectives. In this paper, we review the various sources of process variability, and relate them to variability in the various parts of the power delivery subsystem. Specifically, we address variability in the following areas: 1. static (leakage) power; 2. dynamic power; 3. on-chip power grid; 4. on-chip decoupling capacitance; 5. package power grid; 6. workload. It is important to model all these sources of variability with the correct balance of effort and accuracy, thus it is important to get broad bounds on each of the sources in order to insure that the appropriate level of modeling and analysis investment is made in order to bound or worst-case each component without undue pessimism. It is also important to have a first order understanding of the technology trends in each of these sources of variability. This will allow the designer and CAD tool developer to anticipate future problem areas and plan work arounds as needed.\",\"PeriodicalId\":120002,\"journal\":{\"name\":\"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013235.1013241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

只提供摘要形式。集成电路制造过程中存在不可避免的缺陷和波动,导致所制造的有源和无源器件的电气参数不断增长的系统和随机变化。这种变化对芯片性能各个方面的影响已经成为许多论文的主题,分析和处理这种变化的技术,广泛地称为可制造性设计,正在成为该领域的下一个热门话题。目前该领域的大部分工作都集中在时序上,但众所周知,现代集成电路的功率非常有限,静态和动态功率已成为首要的设计目标。在本文中,我们回顾了过程可变性的各种来源,并将它们与电力输送子系统各部分的可变性联系起来。具体地说,我们在以下方面解决可变性:1。静(漏)电;2. 动态能力;3.片上电网;4. 片上去耦电容;5. 成套电网;6. 工作负载。重要的是对所有这些可变性来源进行建模,以正确地平衡工作量和准确性,因此,重要的是要在每个来源上获得广泛的界限,以确保进行适当级别的建模和分析投资,以便在不过度悲观的情况下约束或最差情况下每个组件。对这些变化源中的每一个技术趋势有一个一级的了解也是很重要的。这将允许设计人员和CAD工具开发人员预测未来的问题领域,并根据需要计划工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of variability on power
Summary form only given. The integrated circuit manufacturing process has inevitable imperfections and fluctuations that result in ever-growing systematic and random variations in the electrical parameters of active and passive devices fabricated. The impact of such variations on various aspects of chip performance has been the subject of numerous papers, and techniques for analyzing and dealing with such variability, broadly labelled design for manufacturability, are emerging as the next hot topic in this area. The focus of much of the current work in this area has been on timing, but it is well known that modern integrated circuits are very heavily power limited and that static and dynamic power have emerged as first class design objectives. In this paper, we review the various sources of process variability, and relate them to variability in the various parts of the power delivery subsystem. Specifically, we address variability in the following areas: 1. static (leakage) power; 2. dynamic power; 3. on-chip power grid; 4. on-chip decoupling capacitance; 5. package power grid; 6. workload. It is important to model all these sources of variability with the correct balance of effort and accuracy, thus it is important to get broad bounds on each of the sources in order to insure that the appropriate level of modeling and analysis investment is made in order to bound or worst-case each component without undue pessimism. It is also important to have a first order understanding of the technology trends in each of these sources of variability. This will allow the designer and CAD tool developer to anticipate future problem areas and plan work arounds as needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信