基于KNN和SVM分类器特征选择的基于基因表达的癌症分类

S. Bouazza, N. Hamdi, A. Zeroual, K. Auhmani
{"title":"基于KNN和SVM分类器特征选择的基于基因表达的癌症分类","authors":"S. Bouazza, N. Hamdi, A. Zeroual, K. Auhmani","doi":"10.1109/ISACV.2015.7106168","DOIUrl":null,"url":null,"abstract":"This paper presents a study of feature selection methods effect, using a filter approach, on the accuracy and error of supervised classification of cancer. A comparative evaluation between different selection methods: Fisher, T-Statistics, SNR and ReliefF, is carried out, using the dataset of different cancers; leukemia cancer, prostate cancer and colon cancer. The classification results using k nearest neighbors (KNN) and support vector machine (SVM) classifiers show that the combination between SNR's method and the SVM classifier can present the highest accuracy.","PeriodicalId":426557,"journal":{"name":"2015 Intelligent Systems and Computer Vision (ISCV)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Gene-expression-based cancer classification through feature selection with KNN and SVM classifiers\",\"authors\":\"S. Bouazza, N. Hamdi, A. Zeroual, K. Auhmani\",\"doi\":\"10.1109/ISACV.2015.7106168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study of feature selection methods effect, using a filter approach, on the accuracy and error of supervised classification of cancer. A comparative evaluation between different selection methods: Fisher, T-Statistics, SNR and ReliefF, is carried out, using the dataset of different cancers; leukemia cancer, prostate cancer and colon cancer. The classification results using k nearest neighbors (KNN) and support vector machine (SVM) classifiers show that the combination between SNR's method and the SVM classifier can present the highest accuracy.\",\"PeriodicalId\":426557,\"journal\":{\"name\":\"2015 Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2015.7106168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2015.7106168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文研究了特征选择方法对癌症监督分类正确率和错误率的影响。利用不同癌症的数据集,对Fisher、T-Statistics、SNR和ReliefF等不同的选择方法进行了比较评价;白血病、前列腺癌和结肠癌。使用k个最近邻(KNN)和支持向量机(SVM)分类器进行分类的结果表明,信噪比方法与支持向量机分类器相结合可以获得最高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene-expression-based cancer classification through feature selection with KNN and SVM classifiers
This paper presents a study of feature selection methods effect, using a filter approach, on the accuracy and error of supervised classification of cancer. A comparative evaluation between different selection methods: Fisher, T-Statistics, SNR and ReliefF, is carried out, using the dataset of different cancers; leukemia cancer, prostate cancer and colon cancer. The classification results using k nearest neighbors (KNN) and support vector machine (SVM) classifiers show that the combination between SNR's method and the SVM classifier can present the highest accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信