基于双阶段注意力的递归神经网络市场微观结构

Chae-Shick Chung, Sukjin Park
{"title":"基于双阶段注意力的递归神经网络市场微观结构","authors":"Chae-Shick Chung, Sukjin Park","doi":"10.1109/CSDE53843.2021.9718424","DOIUrl":null,"url":null,"abstract":"This paper applies the Dual-Stage Attention-Based Recurrent Neural Network(DA-RNN) model to predict future price movements using microstructure variables. We analyze whether microstructure variables have predictive power for future price movements, and what factors influence this predictive power. We find that microstructure variables possess predictive power against the direction of future price movements. This predictive power depends on how many uninformed traders exist in the market. Moreover, the importance of microstructure variables is negatively related to market liquidity. Thus, while microstructure variables are more important in severe market conditions with high transaction costs, the effect of trading on price dynamics depends on market structure.","PeriodicalId":166950,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Stage Attention-Based Recurrent Neural Networks for Market Microstructure\",\"authors\":\"Chae-Shick Chung, Sukjin Park\",\"doi\":\"10.1109/CSDE53843.2021.9718424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies the Dual-Stage Attention-Based Recurrent Neural Network(DA-RNN) model to predict future price movements using microstructure variables. We analyze whether microstructure variables have predictive power for future price movements, and what factors influence this predictive power. We find that microstructure variables possess predictive power against the direction of future price movements. This predictive power depends on how many uninformed traders exist in the market. Moreover, the importance of microstructure variables is negatively related to market liquidity. Thus, while microstructure variables are more important in severe market conditions with high transaction costs, the effect of trading on price dynamics depends on market structure.\",\"PeriodicalId\":166950,\"journal\":{\"name\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSDE53843.2021.9718424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE53843.2021.9718424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用基于双阶段注意力的递归神经网络(DA-RNN)模型,利用微观结构变量预测未来价格走势。我们分析微观结构变量是否对未来价格走势具有预测能力,以及影响这种预测能力的因素。我们发现微观结构变量对未来价格走势的方向具有预测能力。这种预测能力取决于市场上有多少不知情的交易者。微观结构变量的重要性与市场流动性呈负相关。因此,虽然微观结构变量在交易成本高的严峻市场条件下更为重要,但交易对价格动态的影响取决于市场结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Stage Attention-Based Recurrent Neural Networks for Market Microstructure
This paper applies the Dual-Stage Attention-Based Recurrent Neural Network(DA-RNN) model to predict future price movements using microstructure variables. We analyze whether microstructure variables have predictive power for future price movements, and what factors influence this predictive power. We find that microstructure variables possess predictive power against the direction of future price movements. This predictive power depends on how many uninformed traders exist in the market. Moreover, the importance of microstructure variables is negatively related to market liquidity. Thus, while microstructure variables are more important in severe market conditions with high transaction costs, the effect of trading on price dynamics depends on market structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信