{"title":"使用迭代二次规划的时间驱动双分区与复制","authors":"Shih-Lian T. Ou, Massoud Pedram","doi":"10.1109/ASPDAC.1999.759724","DOIUrl":null,"url":null,"abstract":"We present an algorithm for solving a general min-cut, two-way partitioning problem subject to timing constraints. The problem is formulated as a constrained programming problem and solved in two phases: cut-set minimization and timing satisfaction. A mathematical programming technique based on iterative quadratic programming (TPIQ) is used to find an approximate solution to the constrained problem. When the timing constraints are too strict to have a feasible solution, node replication is used to satisfy the constraints. Experimental results on the ISCAS89 benchmark suite show that TPIQ can solve the timing-driven bipartitioning problem with little impact on the chip size.","PeriodicalId":201352,"journal":{"name":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Timing-driven bipartitioning with replication using iterative quadratic programming\",\"authors\":\"Shih-Lian T. Ou, Massoud Pedram\",\"doi\":\"10.1109/ASPDAC.1999.759724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for solving a general min-cut, two-way partitioning problem subject to timing constraints. The problem is formulated as a constrained programming problem and solved in two phases: cut-set minimization and timing satisfaction. A mathematical programming technique based on iterative quadratic programming (TPIQ) is used to find an approximate solution to the constrained problem. When the timing constraints are too strict to have a feasible solution, node replication is used to satisfy the constraints. Experimental results on the ISCAS89 benchmark suite show that TPIQ can solve the timing-driven bipartitioning problem with little impact on the chip size.\",\"PeriodicalId\":201352,\"journal\":{\"name\":\"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.1999.759724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1999.759724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Timing-driven bipartitioning with replication using iterative quadratic programming
We present an algorithm for solving a general min-cut, two-way partitioning problem subject to timing constraints. The problem is formulated as a constrained programming problem and solved in two phases: cut-set minimization and timing satisfaction. A mathematical programming technique based on iterative quadratic programming (TPIQ) is used to find an approximate solution to the constrained problem. When the timing constraints are too strict to have a feasible solution, node replication is used to satisfy the constraints. Experimental results on the ISCAS89 benchmark suite show that TPIQ can solve the timing-driven bipartitioning problem with little impact on the chip size.