{"title":"基于集成深度神经网络的颅内出血非对比CT图像检测及亚型分类","authors":"Yunan Wu, M. Supanich, Jie Deng","doi":"10.2991/jaims.d.210618.001","DOIUrl":null,"url":null,"abstract":"Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.","PeriodicalId":196434,"journal":{"name":"Journal of Artificial Intelligence for Medical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ensembled Deep Neural Network for Intracranial Hemorrhage Detection and Subtype Classification on Noncontrast CT Images\",\"authors\":\"Yunan Wu, M. Supanich, Jie Deng\",\"doi\":\"10.2991/jaims.d.210618.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.\",\"PeriodicalId\":196434,\"journal\":{\"name\":\"Journal of Artificial Intelligence for Medical Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence for Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jaims.d.210618.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence for Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jaims.d.210618.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensembled Deep Neural Network for Intracranial Hemorrhage Detection and Subtype Classification on Noncontrast CT Images
Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developedanensembleddeepneuralnetworkforthedetectionandsubtypeclassificationofintracranialhemorrhage.Themodelconsistedoftwoparallelnetworkpathways,oneusingthreedifferentwindowlevel/widthsettingstoenhancetheimagecon-trastofbrain,blood,andsofttissue.Theotherextractedspatialinformationofadjacentimageslicestothetargetslice.BothpathwaysexploitedtheEfficientNet-B0asthebasicarchitectureandwereensembledtogeneratethefinalprediction.Classacti-vationmappingwasappliedinbothpathwaystohighlighttheregionsofdetectedhemorrhageandtheassociatedsubtypes.ThemodelwastrainedandtestedusingIntracranialHemorrhageDetectionChallenge(IHDC)datasetlaunchedbytheRadiologicalSocietyofNorthAmerica(RSNA)in2019,whichcontained674,258headnoncontrastscomputertomographyimagesacquiredfrom19,530patients.Anindependentdataset(CQ500)acquiredfromanotherinstitutionwasusedtotestthegeneralizabilityofthetrainedmodel.Theoverallaccuracy,sensitivity,andF1scoreforintracranialhemorrhagedetectionwere95.7%,85.9%,and86.7%onIHDCtestingdatasetand92.4%,92.6%,and93.4%onexternalCQ500testingdataset.Theheatmapsbyclassacti-vationmappingsuccessfullydemonstrateddiscriminativefeatureregionsofthepredictedhemorrhagelocationsandsubtypes,providingvisualguidanceforradiologiststoassistinrapiddiagnosisofintracranialhemorrhage.