基于核范数正则化方法的LPV子空间识别

P. Gebraad, J. Wingerden, G. Veen, M. Verhaegen
{"title":"基于核范数正则化方法的LPV子空间识别","authors":"P. Gebraad, J. Wingerden, G. Veen, M. Verhaegen","doi":"10.1109/ACC.2011.5991313","DOIUrl":null,"url":null,"abstract":"It is well-known that recently proposed Linear Parameter-Varying (LPV) subspace identification techniques suffer from a curse of dimensionality leading to an ill-posed parameter estimation problem. In this paper we will focus on regularization methods to solve the parameter estimation problem. Tikhonov and TSVD regularization are conventional general-purpose regularization methods. These general-purpose regularization methods give preference to a solution with a small 2-norm. In principle many other types of additional information about the desired solution can be incorporated in order to stabilize the ill-posed problem. The main contribution of this paper is that we propose a novel regularization strategy for LPV subspace methods: the nuclear norm regularization method. By applying state-of-the-art convex optimization techniques, the method stabilizes the parameter estimation problem by including information on the desired solution that is specific to the (LPV) subspace identification scheme. We will conclude the paper with a summarizing comparison between the different regularization techniques.","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"LPV subspace identification using a novel nuclear norm regularization method\",\"authors\":\"P. Gebraad, J. Wingerden, G. Veen, M. Verhaegen\",\"doi\":\"10.1109/ACC.2011.5991313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that recently proposed Linear Parameter-Varying (LPV) subspace identification techniques suffer from a curse of dimensionality leading to an ill-posed parameter estimation problem. In this paper we will focus on regularization methods to solve the parameter estimation problem. Tikhonov and TSVD regularization are conventional general-purpose regularization methods. These general-purpose regularization methods give preference to a solution with a small 2-norm. In principle many other types of additional information about the desired solution can be incorporated in order to stabilize the ill-posed problem. The main contribution of this paper is that we propose a novel regularization strategy for LPV subspace methods: the nuclear norm regularization method. By applying state-of-the-art convex optimization techniques, the method stabilizes the parameter estimation problem by including information on the desired solution that is specific to the (LPV) subspace identification scheme. We will conclude the paper with a summarizing comparison between the different regularization techniques.\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

众所周知,近年来提出的线性变参子空间识别技术存在维数不足导致的不适定参数估计问题。在本文中,我们将重点讨论正则化方法来解决参数估计问题。Tikhonov正则化和TSVD正则化是常用的通用正则化方法。这些通用正则化方法优先考虑具有小2范数的解。原则上,为了稳定不适定问题,可以加入关于期望解的许多其他类型的附加信息。本文的主要贡献在于我们提出了一种新的LPV子空间方法的正则化策略:核范数正则化方法。通过应用最先进的凸优化技术,该方法通过包含特定于(LPV)子空间识别方案的期望解的信息来稳定参数估计问题。我们将总结比较不同的正则化技术来结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LPV subspace identification using a novel nuclear norm regularization method
It is well-known that recently proposed Linear Parameter-Varying (LPV) subspace identification techniques suffer from a curse of dimensionality leading to an ill-posed parameter estimation problem. In this paper we will focus on regularization methods to solve the parameter estimation problem. Tikhonov and TSVD regularization are conventional general-purpose regularization methods. These general-purpose regularization methods give preference to a solution with a small 2-norm. In principle many other types of additional information about the desired solution can be incorporated in order to stabilize the ill-posed problem. The main contribution of this paper is that we propose a novel regularization strategy for LPV subspace methods: the nuclear norm regularization method. By applying state-of-the-art convex optimization techniques, the method stabilizes the parameter estimation problem by including information on the desired solution that is specific to the (LPV) subspace identification scheme. We will conclude the paper with a summarizing comparison between the different regularization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信