机器人控制微源诱导单细胞迁移的控制

Hao Yang, Xiangpeng Li, Yong Wang, Dong Sun
{"title":"机器人控制微源诱导单细胞迁移的控制","authors":"Hao Yang, Xiangpeng Li, Yong Wang, Dong Sun","doi":"10.1109/ROBIO.2015.7419059","DOIUrl":null,"url":null,"abstract":"Cell migration is a cell movement that responds to certain stimuli driven by inner cytoskeleton network. Control of cell migration is a very challenging problem, and successfully addressing the problem will promote many promising biomedical applications. In this paper, we propose the use of a robotically controlled optical tweezers manipulation system to control a single cell to migrate to a desired region with a unified controller. Chemoattractant loaded microsource beads are employed to release the drug to generate gradient field, which induces cell polarization. A new geometric model that formulates the cell to confine within the high motility area while maintaining the microsource bead near the optical trap is established. Based on this model, a potential field function based controller is developed to migrate the cell to a desired region. Simulation and experiments results are presented to illustrate the effectiveness of the proposed approach.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of single cell migration induced by robotically controlled microsource\",\"authors\":\"Hao Yang, Xiangpeng Li, Yong Wang, Dong Sun\",\"doi\":\"10.1109/ROBIO.2015.7419059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell migration is a cell movement that responds to certain stimuli driven by inner cytoskeleton network. Control of cell migration is a very challenging problem, and successfully addressing the problem will promote many promising biomedical applications. In this paper, we propose the use of a robotically controlled optical tweezers manipulation system to control a single cell to migrate to a desired region with a unified controller. Chemoattractant loaded microsource beads are employed to release the drug to generate gradient field, which induces cell polarization. A new geometric model that formulates the cell to confine within the high motility area while maintaining the microsource bead near the optical trap is established. Based on this model, a potential field function based controller is developed to migrate the cell to a desired region. Simulation and experiments results are presented to illustrate the effectiveness of the proposed approach.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7419059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细胞迁移是在细胞骨架网络的驱动下,对某些刺激作出反应的细胞运动。细胞迁移的控制是一个非常具有挑战性的问题,成功解决这一问题将促进许多有前景的生物医学应用。在本文中,我们提出使用机器人控制的光镊操作系统来控制单个细胞通过统一的控制器迁移到期望的区域。利用化学引诱剂负载微源微珠释放药物,产生梯度场,诱导细胞极化。建立了一种新的几何模型,该模型使细胞被限制在高运动区域内,同时使微源头保持在光阱附近。在此模型的基础上,提出了一种基于势场函数的控制器,用于将细胞迁移到期望区域。仿真和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of single cell migration induced by robotically controlled microsource
Cell migration is a cell movement that responds to certain stimuli driven by inner cytoskeleton network. Control of cell migration is a very challenging problem, and successfully addressing the problem will promote many promising biomedical applications. In this paper, we propose the use of a robotically controlled optical tweezers manipulation system to control a single cell to migrate to a desired region with a unified controller. Chemoattractant loaded microsource beads are employed to release the drug to generate gradient field, which induces cell polarization. A new geometric model that formulates the cell to confine within the high motility area while maintaining the microsource bead near the optical trap is established. Based on this model, a potential field function based controller is developed to migrate the cell to a desired region. Simulation and experiments results are presented to illustrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信