改进了一阶自回归模型的调谐,用于放大和前向中继信道估计

Soukayna Ghandour-Haidar, L. Ros, J. Brossier
{"title":"改进了一阶自回归模型的调谐,用于放大和前向中继信道估计","authors":"Soukayna Ghandour-Haidar, L. Ros, J. Brossier","doi":"10.1109/ICTEL.2012.6221314","DOIUrl":null,"url":null,"abstract":"This paper deals with the estimation of the Amplify-and-Forward channel. Considering two widely accepted Rayleigh links with Jakes' spectrum, a first-order autoregressive model AR(1) is used to approximate the cascade of both links. A standard estimation algorithm is the Kalman filter. In this paper, we keep the choice of the AR(1)-Kalman filter, but we show that the method usually exploited in the literature to calculate the AR(1)-model parameter presents some disappointing results. We propose other values of the AR(1)-model parameter to improve the channel estimation, based on an off-line minimization of the asymptotic mean square error MSE for a given Doppler and signal to noise ratio. The simulation results show a considerable gain in terms of MSE of the well-tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.","PeriodicalId":413534,"journal":{"name":"2012 19th International Conference on Telecommunications (ICT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the tuning of first-order autoregressive model for the estimation of amplify and forward relay channel\",\"authors\":\"Soukayna Ghandour-Haidar, L. Ros, J. Brossier\",\"doi\":\"10.1109/ICTEL.2012.6221314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the estimation of the Amplify-and-Forward channel. Considering two widely accepted Rayleigh links with Jakes' spectrum, a first-order autoregressive model AR(1) is used to approximate the cascade of both links. A standard estimation algorithm is the Kalman filter. In this paper, we keep the choice of the AR(1)-Kalman filter, but we show that the method usually exploited in the literature to calculate the AR(1)-model parameter presents some disappointing results. We propose other values of the AR(1)-model parameter to improve the channel estimation, based on an off-line minimization of the asymptotic mean square error MSE for a given Doppler and signal to noise ratio. The simulation results show a considerable gain in terms of MSE of the well-tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.\",\"PeriodicalId\":413534,\"journal\":{\"name\":\"2012 19th International Conference on Telecommunications (ICT)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 19th International Conference on Telecommunications (ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTEL.2012.6221314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 19th International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEL.2012.6221314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了放大前向信道的估计问题。考虑到两个被广泛接受的瑞利链路具有Jakes谱,使用一阶自回归模型AR(1)来近似这两个链路的级联。一种标准的估计算法是卡尔曼滤波。在本文中,我们保留了AR(1)-卡尔曼滤波器的选择,但我们表明,文献中通常使用的方法来计算AR(1)-模型参数的结果令人失望。我们提出了AR(1)模型参数的其他值来改进信道估计,基于对给定多普勒和信噪比的渐近均方误差MSE的离线最小化。仿真结果表明,调优后的基于卡尔曼的信道估计器在MSE方面有相当大的增益,特别是对于最常见的慢衰落信道场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the tuning of first-order autoregressive model for the estimation of amplify and forward relay channel
This paper deals with the estimation of the Amplify-and-Forward channel. Considering two widely accepted Rayleigh links with Jakes' spectrum, a first-order autoregressive model AR(1) is used to approximate the cascade of both links. A standard estimation algorithm is the Kalman filter. In this paper, we keep the choice of the AR(1)-Kalman filter, but we show that the method usually exploited in the literature to calculate the AR(1)-model parameter presents some disappointing results. We propose other values of the AR(1)-model parameter to improve the channel estimation, based on an off-line minimization of the asymptotic mean square error MSE for a given Doppler and signal to noise ratio. The simulation results show a considerable gain in terms of MSE of the well-tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信