自热对体FinFET器件中TDDB的影响:均匀与非均匀应力

Z. Chbili, A. Kerber
{"title":"自热对体FinFET器件中TDDB的影响:均匀与非均匀应力","authors":"Z. Chbili, A. Kerber","doi":"10.1109/IIRW.2016.7904898","DOIUrl":null,"url":null,"abstract":"Self-heating is a growing concern for thin-body devices. In this paper, we discuss the impact of self-heating on TDDB using uniform and non-uniform gate dielectric stress. We show lifetime reduction with increasing drain voltages consistent with elevated temperature stress. It is also shown that the power law dependence to gate voltage is preserved at different drain voltages. Due to limited self-heating during nominal device operation TDDB lifetime is not reduced for CMOS circuits.","PeriodicalId":436183,"journal":{"name":"2016 IEEE International Integrated Reliability Workshop (IIRW)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Self-heating impact on TDDB in bulk FinFET devices: Uniform vs Non-uniform Stress\",\"authors\":\"Z. Chbili, A. Kerber\",\"doi\":\"10.1109/IIRW.2016.7904898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-heating is a growing concern for thin-body devices. In this paper, we discuss the impact of self-heating on TDDB using uniform and non-uniform gate dielectric stress. We show lifetime reduction with increasing drain voltages consistent with elevated temperature stress. It is also shown that the power law dependence to gate voltage is preserved at different drain voltages. Due to limited self-heating during nominal device operation TDDB lifetime is not reduced for CMOS circuits.\",\"PeriodicalId\":436183,\"journal\":{\"name\":\"2016 IEEE International Integrated Reliability Workshop (IIRW)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Integrated Reliability Workshop (IIRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIRW.2016.7904898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Integrated Reliability Workshop (IIRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW.2016.7904898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

自热是薄体设备日益关注的问题。本文从均匀和非均匀栅极介电应力两方面讨论了自热对TDDB的影响。我们显示,随着漏极电压的增加,寿命减少,与高温应力一致。结果还表明,在不同漏极电压下,栅极电压与栅极电压的幂律关系仍然保持不变。由于在标称器件工作期间有限的自热,CMOS电路的TDDB寿命不会减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-heating impact on TDDB in bulk FinFET devices: Uniform vs Non-uniform Stress
Self-heating is a growing concern for thin-body devices. In this paper, we discuss the impact of self-heating on TDDB using uniform and non-uniform gate dielectric stress. We show lifetime reduction with increasing drain voltages consistent with elevated temperature stress. It is also shown that the power law dependence to gate voltage is preserved at different drain voltages. Due to limited self-heating during nominal device operation TDDB lifetime is not reduced for CMOS circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信