{"title":"利用可逆量子门进行翻转比特纠错的量子编码器和解码器仿真","authors":"R. Anitha, B. Vijayalakshmi","doi":"10.1109/RTECC.2018.8625693","DOIUrl":null,"url":null,"abstract":"Quantum technology is a new field of physics and engineering. In emerging areas like Quantum Cryptography, Quantum Computing etc, Quantum circuits play a key role. Quantum circuit is a model for Quantum computation, the computation process of Quantum gates are based on reversible logic. Encoder and Decoder are designed using Quantum gates, and synthesized in the QCAD simulator. Quantum error correction (QEC) is essential to protect quantum information from errors due to quantum noise and decoherence. It is also use to achieve fault-tolerant quantum computation that deals with noise on stored information, faulty quantum gates and faulty measurements.","PeriodicalId":445688,"journal":{"name":"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SIMULATION OF QUANTUM ENCODER & DECODER WITH FLIP BIT ERROR CORRECTION USING REVERSIBLE QUANTUM GATES\",\"authors\":\"R. Anitha, B. Vijayalakshmi\",\"doi\":\"10.1109/RTECC.2018.8625693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum technology is a new field of physics and engineering. In emerging areas like Quantum Cryptography, Quantum Computing etc, Quantum circuits play a key role. Quantum circuit is a model for Quantum computation, the computation process of Quantum gates are based on reversible logic. Encoder and Decoder are designed using Quantum gates, and synthesized in the QCAD simulator. Quantum error correction (QEC) is essential to protect quantum information from errors due to quantum noise and decoherence. It is also use to achieve fault-tolerant quantum computation that deals with noise on stored information, faulty quantum gates and faulty measurements.\",\"PeriodicalId\":445688,\"journal\":{\"name\":\"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTECC.2018.8625693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTECC.2018.8625693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SIMULATION OF QUANTUM ENCODER & DECODER WITH FLIP BIT ERROR CORRECTION USING REVERSIBLE QUANTUM GATES
Quantum technology is a new field of physics and engineering. In emerging areas like Quantum Cryptography, Quantum Computing etc, Quantum circuits play a key role. Quantum circuit is a model for Quantum computation, the computation process of Quantum gates are based on reversible logic. Encoder and Decoder are designed using Quantum gates, and synthesized in the QCAD simulator. Quantum error correction (QEC) is essential to protect quantum information from errors due to quantum noise and decoherence. It is also use to achieve fault-tolerant quantum computation that deals with noise on stored information, faulty quantum gates and faulty measurements.