{"title":"基于并五苯有机薄膜晶体管的柔性氢传感器","authors":"Bochang Li, P. Lai, W. Tang","doi":"10.1109/EDSSC.2018.8487082","DOIUrl":null,"url":null,"abstract":"A flexible hydrogen gas sensor based on pentacene organic thin-film transistor (OTFT) using palladium (Pd) source and drain (S/D) electrodes as the sensing medium is prepared on adhesive vacuum tape. The sensor exhibits a clear, rapid and concentration-dependent response upon hydrogen exposure without the need of heating. In addition, in order to demonstrate the flexibility of the sensor, measurements on a curved surface are performed. The sensor, when attached to the curved surface, shows normal transistor characteristics, which essentially remains the same after one hour of tensile stress.","PeriodicalId":279745,"journal":{"name":"2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrogen Sensor Based on Pentacene Organic Thin-Film Transistor for Flexible Applications\",\"authors\":\"Bochang Li, P. Lai, W. Tang\",\"doi\":\"10.1109/EDSSC.2018.8487082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A flexible hydrogen gas sensor based on pentacene organic thin-film transistor (OTFT) using palladium (Pd) source and drain (S/D) electrodes as the sensing medium is prepared on adhesive vacuum tape. The sensor exhibits a clear, rapid and concentration-dependent response upon hydrogen exposure without the need of heating. In addition, in order to demonstrate the flexibility of the sensor, measurements on a curved surface are performed. The sensor, when attached to the curved surface, shows normal transistor characteristics, which essentially remains the same after one hour of tensile stress.\",\"PeriodicalId\":279745,\"journal\":{\"name\":\"2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2018.8487082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2018.8487082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogen Sensor Based on Pentacene Organic Thin-Film Transistor for Flexible Applications
A flexible hydrogen gas sensor based on pentacene organic thin-film transistor (OTFT) using palladium (Pd) source and drain (S/D) electrodes as the sensing medium is prepared on adhesive vacuum tape. The sensor exhibits a clear, rapid and concentration-dependent response upon hydrogen exposure without the need of heating. In addition, in order to demonstrate the flexibility of the sensor, measurements on a curved surface are performed. The sensor, when attached to the curved surface, shows normal transistor characteristics, which essentially remains the same after one hour of tensile stress.