一种基于运动趋势和变速特性的轨迹简化算法

Wei Li, Liang Zhou
{"title":"一种基于运动趋势和变速特性的轨迹简化算法","authors":"Wei Li, Liang Zhou","doi":"10.1117/12.2691797","DOIUrl":null,"url":null,"abstract":"Trajectory compression can solve the redundancy problem of a large amount of trajectory data generated by GPS positioning systems. This paper proposes to find the feature points inside the trajectory according to the motion trend and variable speed characteristics, and then use these feature points to segment the original trajectory and compress them separately. Experiments show that the algorithm performs well in terms of running time, compression rate and average error.","PeriodicalId":361127,"journal":{"name":"International Conference on Images, Signals, and Computing","volume":"12783 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A trajectory simplification algorithm based on motion trend and variable speed characteristics\",\"authors\":\"Wei Li, Liang Zhou\",\"doi\":\"10.1117/12.2691797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory compression can solve the redundancy problem of a large amount of trajectory data generated by GPS positioning systems. This paper proposes to find the feature points inside the trajectory according to the motion trend and variable speed characteristics, and then use these feature points to segment the original trajectory and compress them separately. Experiments show that the algorithm performs well in terms of running time, compression rate and average error.\",\"PeriodicalId\":361127,\"journal\":{\"name\":\"International Conference on Images, Signals, and Computing\",\"volume\":\"12783 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Images, Signals, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2691797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Images, Signals, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2691797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轨迹压缩可以解决GPS定位系统产生的大量轨迹数据的冗余问题。本文提出根据运动趋势和变速特性找到轨迹内部的特征点,然后利用这些特征点对原始轨迹进行分割并分别压缩。实验表明,该算法在运行时间、压缩率和平均误差率方面都有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A trajectory simplification algorithm based on motion trend and variable speed characteristics
Trajectory compression can solve the redundancy problem of a large amount of trajectory data generated by GPS positioning systems. This paper proposes to find the feature points inside the trajectory according to the motion trend and variable speed characteristics, and then use these feature points to segment the original trajectory and compress them separately. Experiments show that the algorithm performs well in terms of running time, compression rate and average error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信