复杂城市场景下自动驾驶的混合决策

Rodrigo Gutiérrez-Moreno, R. Barea, M. E. L. Guillén, J. F. Arango, Navil Abdeselam, L. Bergasa
{"title":"复杂城市场景下自动驾驶的混合决策","authors":"Rodrigo Gutiérrez-Moreno, R. Barea, M. E. L. Guillén, J. F. Arango, Navil Abdeselam, L. Bergasa","doi":"10.1109/IV55152.2023.10186666","DOIUrl":null,"url":null,"abstract":"Autonomous driving presents significant challenges due to the variability of behaviours exhibited by surrounding vehicles and the diversity of scenarios encountered. To address these challenges, we propose a hybrid architecture that combines traditional and deep learning techniques. Our architecture includes strategy, tactical and execution modules. Specifically, the strategy module defines the trajectory to be followed. Then, the tactical decision module employs a proximal policy optimization algorithm and deep reinforcement learning. Finally, the maneuver execution module uses a linear-quadratic regulator controller for trajectory tracking and a predictive model controller for lane change execution. This hybrid architecture and the comparison with other classical approaches are the main contributions of this research. Experimental results demonstrate that the proposed framework solves concatenated complex urban scenarios optimally.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Decision Making for Autonomous Driving in Complex Urban Scenarios\",\"authors\":\"Rodrigo Gutiérrez-Moreno, R. Barea, M. E. L. Guillén, J. F. Arango, Navil Abdeselam, L. Bergasa\",\"doi\":\"10.1109/IV55152.2023.10186666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving presents significant challenges due to the variability of behaviours exhibited by surrounding vehicles and the diversity of scenarios encountered. To address these challenges, we propose a hybrid architecture that combines traditional and deep learning techniques. Our architecture includes strategy, tactical and execution modules. Specifically, the strategy module defines the trajectory to be followed. Then, the tactical decision module employs a proximal policy optimization algorithm and deep reinforcement learning. Finally, the maneuver execution module uses a linear-quadratic regulator controller for trajectory tracking and a predictive model controller for lane change execution. This hybrid architecture and the comparison with other classical approaches are the main contributions of this research. Experimental results demonstrate that the proposed framework solves concatenated complex urban scenarios optimally.\",\"PeriodicalId\":195148,\"journal\":{\"name\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV55152.2023.10186666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于周围车辆表现出的行为可变性以及遇到的各种场景,自动驾驶面临着重大挑战。为了应对这些挑战,我们提出了一种结合传统和深度学习技术的混合架构。我们的架构包括战略、战术和执行模块。具体来说,策略模块定义了要遵循的轨迹。然后,战术决策模块采用近端策略优化算法和深度强化学习。最后,机动执行模块使用线性二次型调节器控制器进行轨迹跟踪,使用预测模型控制器进行变道执行。这种混合架构以及与其他经典方法的比较是本研究的主要贡献。实验结果表明,该框架能较好地解决串联的复杂城市场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Decision Making for Autonomous Driving in Complex Urban Scenarios
Autonomous driving presents significant challenges due to the variability of behaviours exhibited by surrounding vehicles and the diversity of scenarios encountered. To address these challenges, we propose a hybrid architecture that combines traditional and deep learning techniques. Our architecture includes strategy, tactical and execution modules. Specifically, the strategy module defines the trajectory to be followed. Then, the tactical decision module employs a proximal policy optimization algorithm and deep reinforcement learning. Finally, the maneuver execution module uses a linear-quadratic regulator controller for trajectory tracking and a predictive model controller for lane change execution. This hybrid architecture and the comparison with other classical approaches are the main contributions of this research. Experimental results demonstrate that the proposed framework solves concatenated complex urban scenarios optimally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信