神经元表型与分子混合物模式识别

R. Mare
{"title":"神经元表型与分子混合物模式识别","authors":"R. Mare","doi":"10.1109/ISSPA.2003.1224797","DOIUrl":null,"url":null,"abstract":"Phenotyping cells and tracking their functional states are key tasks in cell biology and molecular medicine. Current cell classification methods are idiosyncratic to specific fields and based on ad hoc discovery of presumed univariate markers. We propose a general theory of phenotyping based on broadly distributed multivariate markers as the metrics of classification and standard pattern recognition algorithms as the method of class discovery. We present a real-world test case based on the vertebrate retina and demonstrate that pattern recognition methods can extract singular populations of neurons from complex heterocellular arrays: populations visualized solely as elements in a micromolecular N-space. The applications of this computational approach to cell phenotyping range from phylogenetics to drug discovery to environmental monitoring.","PeriodicalId":264814,"journal":{"name":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phenotyping neurons with pattern recognition of molecular mixtures\",\"authors\":\"R. Mare\",\"doi\":\"10.1109/ISSPA.2003.1224797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenotyping cells and tracking their functional states are key tasks in cell biology and molecular medicine. Current cell classification methods are idiosyncratic to specific fields and based on ad hoc discovery of presumed univariate markers. We propose a general theory of phenotyping based on broadly distributed multivariate markers as the metrics of classification and standard pattern recognition algorithms as the method of class discovery. We present a real-world test case based on the vertebrate retina and demonstrate that pattern recognition methods can extract singular populations of neurons from complex heterocellular arrays: populations visualized solely as elements in a micromolecular N-space. The applications of this computational approach to cell phenotyping range from phylogenetics to drug discovery to environmental monitoring.\",\"PeriodicalId\":264814,\"journal\":{\"name\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2003.1224797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2003.1224797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细胞表型分析和功能状态跟踪是细胞生物学和分子医学的关键任务。目前的细胞分类方法是特异性的特定领域和基于临时发现假定的单变量标记。我们提出了一种基于广泛分布的多变量标记作为分类度量和标准模式识别算法作为分类发现方法的一般表型理论。我们提出了一个基于脊椎动物视网膜的真实世界测试案例,并证明模式识别方法可以从复杂的异细胞阵列中提取单一的神经元群体:群体仅被视为微分子n空间中的元素。这种计算方法在细胞表型分析中的应用范围从系统发育到药物发现再到环境监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phenotyping neurons with pattern recognition of molecular mixtures
Phenotyping cells and tracking their functional states are key tasks in cell biology and molecular medicine. Current cell classification methods are idiosyncratic to specific fields and based on ad hoc discovery of presumed univariate markers. We propose a general theory of phenotyping based on broadly distributed multivariate markers as the metrics of classification and standard pattern recognition algorithms as the method of class discovery. We present a real-world test case based on the vertebrate retina and demonstrate that pattern recognition methods can extract singular populations of neurons from complex heterocellular arrays: populations visualized solely as elements in a micromolecular N-space. The applications of this computational approach to cell phenotyping range from phylogenetics to drug discovery to environmental monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信