基于语义关联强度的距离度量学习在三维模型检索中的应用

Xinying Wang, Sheng-sheng Wang, Huanli Pang
{"title":"基于语义关联强度的距离度量学习在三维模型检索中的应用","authors":"Xinying Wang, Sheng-sheng Wang, Huanli Pang","doi":"10.1109/CMSP.2011.74","DOIUrl":null,"url":null,"abstract":"3D model retrieval is an important part of multimedia information retrieval. To overcome the drawbacks of traditional text-based method, current researches mainly concentrate on the content-based 3D model retrieval. However, the effect of the content-based method is not satisfactory because of the semantic gap. Therefore, we propose a new 3D model retrieval method using semantic-correlation-strength-based distance metric learning. The method firstly obtains semantic correlation strength between 3D models from users' long-term relevance feedbacks, then uses semantic correlation strength as weights and adopts improved weighted relevant component analysis method to learn a Mahalanobis distance function. Finally, using the learned Mahalanobis distance metric function to retrieve 3D models. Experiments on Princeton Shape Benchmark show the effectiveness of our proposed method.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance Metric Learning Based on Semantic Correlation Strength for 3D Model Retrieval\",\"authors\":\"Xinying Wang, Sheng-sheng Wang, Huanli Pang\",\"doi\":\"10.1109/CMSP.2011.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D model retrieval is an important part of multimedia information retrieval. To overcome the drawbacks of traditional text-based method, current researches mainly concentrate on the content-based 3D model retrieval. However, the effect of the content-based method is not satisfactory because of the semantic gap. Therefore, we propose a new 3D model retrieval method using semantic-correlation-strength-based distance metric learning. The method firstly obtains semantic correlation strength between 3D models from users' long-term relevance feedbacks, then uses semantic correlation strength as weights and adopts improved weighted relevant component analysis method to learn a Mahalanobis distance function. Finally, using the learned Mahalanobis distance metric function to retrieve 3D models. Experiments on Princeton Shape Benchmark show the effectiveness of our proposed method.\",\"PeriodicalId\":309902,\"journal\":{\"name\":\"2011 International Conference on Multimedia and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Multimedia and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMSP.2011.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维模型检索是多媒体信息检索的重要组成部分。为了克服传统基于文本的三维模型检索方法的不足,目前的研究主要集中在基于内容的三维模型检索上。然而,由于存在语义差距,基于内容的方法的效果并不理想。因此,我们提出了一种基于语义相关强度的距离度量学习的三维模型检索方法。该方法首先从用户的长期相关反馈中获取三维模型之间的语义相关强度,然后以语义相关强度为权重,采用改进的加权相关分量分析法学习马氏距离函数。最后,利用学习到的马氏距离度量函数检索三维模型。在普林斯顿形状基准上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance Metric Learning Based on Semantic Correlation Strength for 3D Model Retrieval
3D model retrieval is an important part of multimedia information retrieval. To overcome the drawbacks of traditional text-based method, current researches mainly concentrate on the content-based 3D model retrieval. However, the effect of the content-based method is not satisfactory because of the semantic gap. Therefore, we propose a new 3D model retrieval method using semantic-correlation-strength-based distance metric learning. The method firstly obtains semantic correlation strength between 3D models from users' long-term relevance feedbacks, then uses semantic correlation strength as weights and adopts improved weighted relevant component analysis method to learn a Mahalanobis distance function. Finally, using the learned Mahalanobis distance metric function to retrieve 3D models. Experiments on Princeton Shape Benchmark show the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信