一种快速组合电路故障仿真算法

W. Ke, S. Seth, B. Bhattacharya
{"title":"一种快速组合电路故障仿真算法","authors":"W. Ke, S. Seth, B. Bhattacharya","doi":"10.1109/ICCAD.1988.122486","DOIUrl":null,"url":null,"abstract":"The performance of a fast fault simulation algorithm for combinational circuits, such as the critical-path-tracing method, is determined primarily by the efficiency with which it can deduce the detectability of stem faults (stem analysis). A graph-based approach to perform stem analysis is proposed. A dynamic data structure, called the criticality constraint graph, is used during the backward pass to carry information related to self-masking and multiple-path sensitization of stem faults. The structure is updated in such a way that when stems are reached, their criticality can be found by looking at the criticality constraints on their fanout branches. Compared to the critical-path-tracing method, the algorithm is exact and does not require forward propagation of individual stem faults. Several examples which illustrate the power of the algorithm are given. Preliminary data on an implementation are also provided.<<ETX>>","PeriodicalId":285078,"journal":{"name":"[1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A fast fault simulation algorithm for combinational circuits\",\"authors\":\"W. Ke, S. Seth, B. Bhattacharya\",\"doi\":\"10.1109/ICCAD.1988.122486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of a fast fault simulation algorithm for combinational circuits, such as the critical-path-tracing method, is determined primarily by the efficiency with which it can deduce the detectability of stem faults (stem analysis). A graph-based approach to perform stem analysis is proposed. A dynamic data structure, called the criticality constraint graph, is used during the backward pass to carry information related to self-masking and multiple-path sensitization of stem faults. The structure is updated in such a way that when stems are reached, their criticality can be found by looking at the criticality constraints on their fanout branches. Compared to the critical-path-tracing method, the algorithm is exact and does not require forward propagation of individual stem faults. Several examples which illustrate the power of the algorithm are given. Preliminary data on an implementation are also provided.<<ETX>>\",\"PeriodicalId\":285078,\"journal\":{\"name\":\"[1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1988.122486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1988.122486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

关键路径跟踪法等组合电路快速故障仿真算法的性能主要取决于其推断故障可检测性(故障分析)的效率。提出了一种基于图的干分析方法。在反向传递过程中,使用了一种称为临界约束图的动态数据结构来携带与系统故障的自掩蔽和多路径敏化相关的信息。结构以这样一种方式更新,即当到达茎时,可以通过查看其扇出分支上的临界约束来找到它们的临界性。与关键路径跟踪方法相比,该算法精度高,不需要对单个故障进行前向传播。给出了几个例子来说明该算法的强大功能。还提供了实施的初步数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast fault simulation algorithm for combinational circuits
The performance of a fast fault simulation algorithm for combinational circuits, such as the critical-path-tracing method, is determined primarily by the efficiency with which it can deduce the detectability of stem faults (stem analysis). A graph-based approach to perform stem analysis is proposed. A dynamic data structure, called the criticality constraint graph, is used during the backward pass to carry information related to self-masking and multiple-path sensitization of stem faults. The structure is updated in such a way that when stems are reached, their criticality can be found by looking at the criticality constraints on their fanout branches. Compared to the critical-path-tracing method, the algorithm is exact and does not require forward propagation of individual stem faults. Several examples which illustrate the power of the algorithm are given. Preliminary data on an implementation are also provided.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信