基于决策树的计算机自适应测试

M. Ueno, Pokpong Songmuang
{"title":"基于决策树的计算机自适应测试","authors":"M. Ueno, Pokpong Songmuang","doi":"10.1109/ICALT.2010.58","DOIUrl":null,"url":null,"abstract":"This paper proposes a new computerized adaptive testing employing a decision tree model, instead of test theories. The attribute variable of the model is examinees' responses to each item and the output variable is examinees' test total scores. Some simulation experiments show better performances of the proposed method compared to the traditional methods and solve the problems.","PeriodicalId":166491,"journal":{"name":"2010 10th IEEE International Conference on Advanced Learning Technologies","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Computerized Adaptive Testing Based on Decision Tree\",\"authors\":\"M. Ueno, Pokpong Songmuang\",\"doi\":\"10.1109/ICALT.2010.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new computerized adaptive testing employing a decision tree model, instead of test theories. The attribute variable of the model is examinees' responses to each item and the output variable is examinees' test total scores. Some simulation experiments show better performances of the proposed method compared to the traditional methods and solve the problems.\",\"PeriodicalId\":166491,\"journal\":{\"name\":\"2010 10th IEEE International Conference on Advanced Learning Technologies\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th IEEE International Conference on Advanced Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2010.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2010.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种新的计算机自适应测试方法,采用决策树模型代替测试理论。模型的属性变量为考生对各题的回答,输出变量为考生考试总分。仿真实验表明,与传统方法相比,该方法具有更好的性能,解决了存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computerized Adaptive Testing Based on Decision Tree
This paper proposes a new computerized adaptive testing employing a decision tree model, instead of test theories. The attribute variable of the model is examinees' responses to each item and the output variable is examinees' test total scores. Some simulation experiments show better performances of the proposed method compared to the traditional methods and solve the problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信