驯服静态分析野兽

J. Toman, D. Grossman
{"title":"驯服静态分析野兽","authors":"J. Toman, D. Grossman","doi":"10.4230/LIPIcs.SNAPL.2017.18","DOIUrl":null,"url":null,"abstract":"While industrial-strength static analysis over large, real-world codebases has become commonplace, so too have difficult-to-analyze language constructs, large libraries, and popular frameworks. These features make constructing and evaluating a novel, sound analysis painful, error-prone, and tedious. We motivate the need for research to address these issues by highlighting some of the many challenges faced by static analysis developers in today's software ecosystem. We then propose our short- and long-term research agenda to make static analysis over modern software less burdensome.","PeriodicalId":231548,"journal":{"name":"Summit on Advances in Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Taming the Static Analysis Beast\",\"authors\":\"J. Toman, D. Grossman\",\"doi\":\"10.4230/LIPIcs.SNAPL.2017.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While industrial-strength static analysis over large, real-world codebases has become commonplace, so too have difficult-to-analyze language constructs, large libraries, and popular frameworks. These features make constructing and evaluating a novel, sound analysis painful, error-prone, and tedious. We motivate the need for research to address these issues by highlighting some of the many challenges faced by static analysis developers in today's software ecosystem. We then propose our short- and long-term research agenda to make static analysis over modern software less burdensome.\",\"PeriodicalId\":231548,\"journal\":{\"name\":\"Summit on Advances in Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Summit on Advances in Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SNAPL.2017.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on Advances in Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SNAPL.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

虽然对大型实际代码库进行工业强度的静态分析已经变得司空见惯,但难以分析的语言结构、大型库和流行框架也是如此。这些特性使得构建和评估一个新颖、合理的分析变得痛苦、容易出错和乏味。我们通过强调静态分析开发人员在当今的软件生态系统中所面临的许多挑战,激发了解决这些问题的研究需求。然后,我们提出了我们的短期和长期研究议程,以使现代软件上的静态分析减少负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taming the Static Analysis Beast
While industrial-strength static analysis over large, real-world codebases has become commonplace, so too have difficult-to-analyze language constructs, large libraries, and popular frameworks. These features make constructing and evaluating a novel, sound analysis painful, error-prone, and tedious. We motivate the need for research to address these issues by highlighting some of the many challenges faced by static analysis developers in today's software ecosystem. We then propose our short- and long-term research agenda to make static analysis over modern software less burdensome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信