{"title":"囊泡的磁分裂:理论和可能的实验","authors":"Yao-Gen Shu, Z. Ou-Yang","doi":"10.5220/0007347001490153","DOIUrl":null,"url":null,"abstract":"Our theory has revealed the possibility that the vesicle, which is self-assembled by the diamagnetic amphiphilic block-copolymers, can be manipulated into division by external magnetic field. For the case of the constraint of constant surface area, the passive division can successively take place for 10 times in the situation of Δp = −15 mV; and only 4.5% solution that is contained by the original vesicle with a radius of 4 µm can been retained by 512 vesicles that each contains about 2.31×107 nm3. Thus, if the water channels are embedded in the membrane of vesicle, this method can not only concentrate the solution, but also produce a large number of nanoreactors, which is beneficial to yield an ensemble conclusion of chemical reaction in a very short times. Another case of the constraint of constant volume can also be easy realized by enough supply of the diamagnetic amphiphilic block-copolymers in the progress of division. The latter case is also important for reaction statistics because the original solution can be in equal volume divided into hundreds nanoreactors. This nanoreactor can be used to mimic the reaction of some organelles in vitro. We hope experimenters will try them in future experiments.","PeriodicalId":357085,"journal":{"name":"International Conference on Biomedical Electronics and Devices","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magneto-division of Vesicle: Theory and Possible Experiments\",\"authors\":\"Yao-Gen Shu, Z. Ou-Yang\",\"doi\":\"10.5220/0007347001490153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our theory has revealed the possibility that the vesicle, which is self-assembled by the diamagnetic amphiphilic block-copolymers, can be manipulated into division by external magnetic field. For the case of the constraint of constant surface area, the passive division can successively take place for 10 times in the situation of Δp = −15 mV; and only 4.5% solution that is contained by the original vesicle with a radius of 4 µm can been retained by 512 vesicles that each contains about 2.31×107 nm3. Thus, if the water channels are embedded in the membrane of vesicle, this method can not only concentrate the solution, but also produce a large number of nanoreactors, which is beneficial to yield an ensemble conclusion of chemical reaction in a very short times. Another case of the constraint of constant volume can also be easy realized by enough supply of the diamagnetic amphiphilic block-copolymers in the progress of division. The latter case is also important for reaction statistics because the original solution can be in equal volume divided into hundreds nanoreactors. This nanoreactor can be used to mimic the reaction of some organelles in vitro. We hope experimenters will try them in future experiments.\",\"PeriodicalId\":357085,\"journal\":{\"name\":\"International Conference on Biomedical Electronics and Devices\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Biomedical Electronics and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007347001490153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biomedical Electronics and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007347001490153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magneto-division of Vesicle: Theory and Possible Experiments
Our theory has revealed the possibility that the vesicle, which is self-assembled by the diamagnetic amphiphilic block-copolymers, can be manipulated into division by external magnetic field. For the case of the constraint of constant surface area, the passive division can successively take place for 10 times in the situation of Δp = −15 mV; and only 4.5% solution that is contained by the original vesicle with a radius of 4 µm can been retained by 512 vesicles that each contains about 2.31×107 nm3. Thus, if the water channels are embedded in the membrane of vesicle, this method can not only concentrate the solution, but also produce a large number of nanoreactors, which is beneficial to yield an ensemble conclusion of chemical reaction in a very short times. Another case of the constraint of constant volume can also be easy realized by enough supply of the diamagnetic amphiphilic block-copolymers in the progress of division. The latter case is also important for reaction statistics because the original solution can be in equal volume divided into hundreds nanoreactors. This nanoreactor can be used to mimic the reaction of some organelles in vitro. We hope experimenters will try them in future experiments.