基于合成湍流注入的三维CAA的动静相互作用噪声数值预测

Adil Cader, C. Polacsek, T. L. Garrec, R. Barrier, F. Benjamin, Marc C. Jacob
{"title":"基于合成湍流注入的三维CAA的动静相互作用噪声数值预测","authors":"Adil Cader, C. Polacsek, T. L. Garrec, R. Barrier, F. Benjamin, Marc C. Jacob","doi":"10.2514/6.2018-4190","DOIUrl":null,"url":null,"abstract":"Turbulent RSI (rotor-stator interaction) mechanism is a major broadband source contribution of turbofan noise generation. Acoustic prediction tools used by Industry are based on flat-plate cascade response models with restrictive assumptions on flow and geometry. Due to huge CPU memory and time cost required, Large Eddy Simulations of the complete fan-OGV stage are still out of reach (apart from recent impressive results obtained using the Lattice Boltzmann Method). This paper presents an alternative approach based on the use of a 3-D CAA (Computational Aeroacoustics) code solving the linearized-Euler equations applied to the disturbances and coupled with a synthetic turbulence injection model. The inflow turbulence is synthetized by means of a sum of harmonic gusts with random phases. The Fourier-mode amplitudes are trimmed by a 2 or 3-wave number Von-Karman or Liepmann turbulence spectrum. Swirling convection of the synthetic turbulence is provided by a 3D RANS mean flow solution and interpolated at the nodes of the CAA grid. In this paper, our methodology is first validated on a benchmark case (fully annular duct with swirling flow and a prescribed turbulence) and then applied for the first time to an industrial turbofan in the framework of a European project, TurboNoiseBB. Previous implemented 2D formulation (2-wave number spectrum) for turbulence generation is extended here to 3D (axial, radial, and angular modes) in order to study the sensitivity on cascade effects.","PeriodicalId":429337,"journal":{"name":"2018 AIAA/CEAS Aeroacoustics Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Numerical prediction of rotor-stator interaction noise using 3D CAA with synthetic turbulence injection\",\"authors\":\"Adil Cader, C. Polacsek, T. L. Garrec, R. Barrier, F. Benjamin, Marc C. Jacob\",\"doi\":\"10.2514/6.2018-4190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbulent RSI (rotor-stator interaction) mechanism is a major broadband source contribution of turbofan noise generation. Acoustic prediction tools used by Industry are based on flat-plate cascade response models with restrictive assumptions on flow and geometry. Due to huge CPU memory and time cost required, Large Eddy Simulations of the complete fan-OGV stage are still out of reach (apart from recent impressive results obtained using the Lattice Boltzmann Method). This paper presents an alternative approach based on the use of a 3-D CAA (Computational Aeroacoustics) code solving the linearized-Euler equations applied to the disturbances and coupled with a synthetic turbulence injection model. The inflow turbulence is synthetized by means of a sum of harmonic gusts with random phases. The Fourier-mode amplitudes are trimmed by a 2 or 3-wave number Von-Karman or Liepmann turbulence spectrum. Swirling convection of the synthetic turbulence is provided by a 3D RANS mean flow solution and interpolated at the nodes of the CAA grid. In this paper, our methodology is first validated on a benchmark case (fully annular duct with swirling flow and a prescribed turbulence) and then applied for the first time to an industrial turbofan in the framework of a European project, TurboNoiseBB. Previous implemented 2D formulation (2-wave number spectrum) for turbulence generation is extended here to 3D (axial, radial, and angular modes) in order to study the sensitivity on cascade effects.\",\"PeriodicalId\":429337,\"journal\":{\"name\":\"2018 AIAA/CEAS Aeroacoustics Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 AIAA/CEAS Aeroacoustics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2018-4190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/CEAS Aeroacoustics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-4190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

湍流RSI(动静相互作用)机制是涡扇噪声产生的主要宽带源贡献。工业界使用的声学预测工具基于平板级联响应模型,并对流动和几何形状进行了限制性假设。由于需要巨大的CPU内存和时间成本,完整的风扇- ogv阶段的大涡模拟仍然遥不可及(除了最近使用晶格玻尔兹曼方法获得的令人印象深刻的结果)。本文提出了一种基于三维CAA(计算气动声学)代码的替代方法,该方法求解应用于扰动的线性化欧拉方程,并与合成湍流注入模型相结合。入流湍流是用随机相位的谐波阵风和来合成的。傅里叶模振幅由2或3波数冯-卡门或李普曼湍流谱修剪。合成湍流的旋涡对流由三维RANS平均流解提供,并在CAA网格节点上插值。在本文中,我们的方法首先在基准案例(具有旋流和规定湍流的全环形管道)上进行了验证,然后首次应用于欧洲TurboNoiseBB项目框架下的工业涡轮风扇。为了研究对级联效应的敏感性,本文将之前实现的二维湍流生成公式(2波数谱)扩展到三维(轴向、径向和角向模式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical prediction of rotor-stator interaction noise using 3D CAA with synthetic turbulence injection
Turbulent RSI (rotor-stator interaction) mechanism is a major broadband source contribution of turbofan noise generation. Acoustic prediction tools used by Industry are based on flat-plate cascade response models with restrictive assumptions on flow and geometry. Due to huge CPU memory and time cost required, Large Eddy Simulations of the complete fan-OGV stage are still out of reach (apart from recent impressive results obtained using the Lattice Boltzmann Method). This paper presents an alternative approach based on the use of a 3-D CAA (Computational Aeroacoustics) code solving the linearized-Euler equations applied to the disturbances and coupled with a synthetic turbulence injection model. The inflow turbulence is synthetized by means of a sum of harmonic gusts with random phases. The Fourier-mode amplitudes are trimmed by a 2 or 3-wave number Von-Karman or Liepmann turbulence spectrum. Swirling convection of the synthetic turbulence is provided by a 3D RANS mean flow solution and interpolated at the nodes of the CAA grid. In this paper, our methodology is first validated on a benchmark case (fully annular duct with swirling flow and a prescribed turbulence) and then applied for the first time to an industrial turbofan in the framework of a European project, TurboNoiseBB. Previous implemented 2D formulation (2-wave number spectrum) for turbulence generation is extended here to 3D (axial, radial, and angular modes) in order to study the sensitivity on cascade effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信