P. Alexakis, O. Alatise, J. Hu, S. Jahdi, J. González, L. Ran, P. Mawby
{"title":"雪崩模式下电源器件故障分析","authors":"P. Alexakis, O. Alatise, J. Hu, S. Jahdi, J. González, L. Ran, P. Mawby","doi":"10.1109/ICPE.2015.7168028","DOIUrl":null,"url":null,"abstract":"This paper investigates the physics of device failure during avalanche for 1.2 kV SiC MOSFETs, silicon MOSFETs and silicon IGBTs. The impact of ambient temperature, initial conditions of the device prior to avalanche breakdown and the avalanche duration is explored for the different technologies. Two types of tests were conducted namely (i) constant avalanche duration with different peak avalanche currents and (ii) constant peak avalanche current with different avalanche durations. SiC MOSFETs are shown to be the most rugged technology followed by the silicon IGBT and the silicon MOSFET. The material properties of SiC suppress the triggering of the parasitic BJT that causes thermal runaway during avalanche.","PeriodicalId":160988,"journal":{"name":"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Analysis of power device failure under avalanche mode Conduction\",\"authors\":\"P. Alexakis, O. Alatise, J. Hu, S. Jahdi, J. González, L. Ran, P. Mawby\",\"doi\":\"10.1109/ICPE.2015.7168028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the physics of device failure during avalanche for 1.2 kV SiC MOSFETs, silicon MOSFETs and silicon IGBTs. The impact of ambient temperature, initial conditions of the device prior to avalanche breakdown and the avalanche duration is explored for the different technologies. Two types of tests were conducted namely (i) constant avalanche duration with different peak avalanche currents and (ii) constant peak avalanche current with different avalanche durations. SiC MOSFETs are shown to be the most rugged technology followed by the silicon IGBT and the silicon MOSFET. The material properties of SiC suppress the triggering of the parasitic BJT that causes thermal runaway during avalanche.\",\"PeriodicalId\":160988,\"journal\":{\"name\":\"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPE.2015.7168028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPE.2015.7168028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
摘要
本文研究了1.2 kV SiC mosfet、硅mosfet和硅igbt雪崩时器件失效的物理特性。探讨了不同技术对环境温度、雪崩击穿前设备初始条件和雪崩持续时间的影响。进行了两种类型的测试,即(i)具有不同峰值雪崩电流的恒定雪崩持续时间和(ii)具有不同雪崩持续时间的恒定峰值雪崩电流。SiC MOSFET被证明是最坚固的技术,其次是硅IGBT和硅MOSFET。SiC的材料特性抑制了雪崩过程中寄生BJT的触发,从而导致雪崩过程中的热失控。
Analysis of power device failure under avalanche mode Conduction
This paper investigates the physics of device failure during avalanche for 1.2 kV SiC MOSFETs, silicon MOSFETs and silicon IGBTs. The impact of ambient temperature, initial conditions of the device prior to avalanche breakdown and the avalanche duration is explored for the different technologies. Two types of tests were conducted namely (i) constant avalanche duration with different peak avalanche currents and (ii) constant peak avalanche current with different avalanche durations. SiC MOSFETs are shown to be the most rugged technology followed by the silicon IGBT and the silicon MOSFET. The material properties of SiC suppress the triggering of the parasitic BJT that causes thermal runaway during avalanche.