基于组合决策树的异构分层合作学习

M. Asadpour, M. N. Ahmadabadi, R. Siegwart
{"title":"基于组合决策树的异构分层合作学习","authors":"M. Asadpour, M. N. Ahmadabadi, R. Siegwart","doi":"10.1109/IROS.2006.281990","DOIUrl":null,"url":null,"abstract":"Decision trees, being human readable and hierarchically structured, provide a suitable mean to derive state-space abstraction and simplify the inclusion of the available knowledge for a reinforcement learning (RL) agent. In this paper, we address two approaches to combine and purify the available knowledge in the abstraction trees, stored among different RL agents in a multi-agent system, or among the decision trees learned by the same agent using different methods. Simulation results in nondeterministic football learning task provide strong evidences for enhancement in convergence rate and policy performance","PeriodicalId":237562,"journal":{"name":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Heterogeneous and Hierarchical Cooperative Learning via Combining Decision Trees\",\"authors\":\"M. Asadpour, M. N. Ahmadabadi, R. Siegwart\",\"doi\":\"10.1109/IROS.2006.281990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision trees, being human readable and hierarchically structured, provide a suitable mean to derive state-space abstraction and simplify the inclusion of the available knowledge for a reinforcement learning (RL) agent. In this paper, we address two approaches to combine and purify the available knowledge in the abstraction trees, stored among different RL agents in a multi-agent system, or among the decision trees learned by the same agent using different methods. Simulation results in nondeterministic football learning task provide strong evidences for enhancement in convergence rate and policy performance\",\"PeriodicalId\":237562,\"journal\":{\"name\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2006.281990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2006.281990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

决策树是人类可读的和分层结构的,为强化学习(RL)代理提供了一种合适的方法来派生状态空间抽象和简化可用知识的包含。在本文中,我们讨论了两种方法来组合和净化抽象树中的可用知识,这些知识存储在多智能体系统中的不同RL智能体之间,或者存储在同一智能体使用不同方法学习的决策树中。不确定性足球学习任务的仿真结果为提高策略的收敛速度和性能提供了有力的证据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous and Hierarchical Cooperative Learning via Combining Decision Trees
Decision trees, being human readable and hierarchically structured, provide a suitable mean to derive state-space abstraction and simplify the inclusion of the available knowledge for a reinforcement learning (RL) agent. In this paper, we address two approaches to combine and purify the available knowledge in the abstraction trees, stored among different RL agents in a multi-agent system, or among the decision trees learned by the same agent using different methods. Simulation results in nondeterministic football learning task provide strong evidences for enhancement in convergence rate and policy performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信