K-Means聚类算法的增强并行实现

M. Baydoun, Mohammad Dawi, H. Ghaziri
{"title":"K-Means聚类算法的增强并行实现","authors":"M. Baydoun, Mohammad Dawi, H. Ghaziri","doi":"10.1109/ACTEA.2016.7560102","DOIUrl":null,"url":null,"abstract":"K-Means is one of the major clustering algorithms thanks to its simplicity and performance. Also, clustering is widely used in several applications that involve image processing, machine intelligence and others. This work discusses an enhanced parallel implementation of K-Means clustering using Cilk Plus and OpenMP on the CPU and CUDA on the GPU. The results are presented for different datasets and images of varying data sizes with concentration on relatively large data. Different numbers of features and clusters are also considered.","PeriodicalId":220936,"journal":{"name":"2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Enhanced parallel implementation of the K-Means clustering algorithm\",\"authors\":\"M. Baydoun, Mohammad Dawi, H. Ghaziri\",\"doi\":\"10.1109/ACTEA.2016.7560102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-Means is one of the major clustering algorithms thanks to its simplicity and performance. Also, clustering is widely used in several applications that involve image processing, machine intelligence and others. This work discusses an enhanced parallel implementation of K-Means clustering using Cilk Plus and OpenMP on the CPU and CUDA on the GPU. The results are presented for different datasets and images of varying data sizes with concentration on relatively large data. Different numbers of features and clusters are also considered.\",\"PeriodicalId\":220936,\"journal\":{\"name\":\"2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACTEA.2016.7560102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACTEA.2016.7560102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

K-Means因其简单、性能好而成为主要的聚类算法之一。此外,聚类被广泛应用于涉及图像处理、机器智能等的几个应用程序中。这项工作讨论了K-Means集群的增强并行实现,在CPU上使用Cilk Plus和OpenMP,在GPU上使用CUDA。结果是针对不同的数据集和不同的数据大小的图像,集中在相对较大的数据。还考虑了不同数量的特征和聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced parallel implementation of the K-Means clustering algorithm
K-Means is one of the major clustering algorithms thanks to its simplicity and performance. Also, clustering is widely used in several applications that involve image processing, machine intelligence and others. This work discusses an enhanced parallel implementation of K-Means clustering using Cilk Plus and OpenMP on the CPU and CUDA on the GPU. The results are presented for different datasets and images of varying data sizes with concentration on relatively large data. Different numbers of features and clusters are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信