C. Boit, Norbert Schafer, D. Abou‐Ras, Clemens Helfmeier, A. Glowacki, U. Kerst
{"title":"背面失效分析技术:硅变薄的好处是什么?","authors":"C. Boit, Norbert Schafer, D. Abou‐Ras, Clemens Helfmeier, A. Glowacki, U. Kerst","doi":"10.1109/IPFA.2014.6898203","DOIUrl":null,"url":null,"abstract":"Failure analysis (FA) of electronic devices today is mostly conducted through the device backside. Advanced silicon (Si) backside preparation for this purpose has developed over the past years, with a final Si thickness from around 300μm to 100μm down to around 20μm to 10μm. This paper discusses what to expect if Si can be processed a little thinner, from 20μm down to a few μm. Improvement of optical imaging, spectral extension of photon emission and expanded optical interaction for stimulation techniques are investigated. Further, Si thickness is coming close to the penetration depth of particle beams. The interaction potential for device analysis is discussed, preliminary results are presented.","PeriodicalId":409316,"journal":{"name":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Backside failure analysis techniques: What's the gain of silicon getting thinner?\",\"authors\":\"C. Boit, Norbert Schafer, D. Abou‐Ras, Clemens Helfmeier, A. Glowacki, U. Kerst\",\"doi\":\"10.1109/IPFA.2014.6898203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure analysis (FA) of electronic devices today is mostly conducted through the device backside. Advanced silicon (Si) backside preparation for this purpose has developed over the past years, with a final Si thickness from around 300μm to 100μm down to around 20μm to 10μm. This paper discusses what to expect if Si can be processed a little thinner, from 20μm down to a few μm. Improvement of optical imaging, spectral extension of photon emission and expanded optical interaction for stimulation techniques are investigated. Further, Si thickness is coming close to the penetration depth of particle beams. The interaction potential for device analysis is discussed, preliminary results are presented.\",\"PeriodicalId\":409316,\"journal\":{\"name\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2014.6898203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2014.6898203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Backside failure analysis techniques: What's the gain of silicon getting thinner?
Failure analysis (FA) of electronic devices today is mostly conducted through the device backside. Advanced silicon (Si) backside preparation for this purpose has developed over the past years, with a final Si thickness from around 300μm to 100μm down to around 20μm to 10μm. This paper discusses what to expect if Si can be processed a little thinner, from 20μm down to a few μm. Improvement of optical imaging, spectral extension of photon emission and expanded optical interaction for stimulation techniques are investigated. Further, Si thickness is coming close to the penetration depth of particle beams. The interaction potential for device analysis is discussed, preliminary results are presented.