使用显著性图和HTM学习的对象识别

I. Kostavelis, L. Nalpantidis, A. Gasteratos
{"title":"使用显著性图和HTM学习的对象识别","authors":"I. Kostavelis, L. Nalpantidis, A. Gasteratos","doi":"10.1109/IST.2012.6295575","DOIUrl":null,"url":null,"abstract":"In this paper a pattern classification and object recognition approach based on bio-inspired techniques is presented. It exploits the Hierarchical Temporal Memory (HTM) topology, which imitates human neocortex for recognition and categorization tasks. The HTM comprises a hierarchical tree structure that exploits enhanced spatiotemporal modules to memorize objects appearing in various orientations. In accordance with HTM's biological inspiration, human vision mechanisms can be used to preprocess the input images. Therefore, the input images undergo a saliency computation step, revealing the plausible information of the scene, where a human might fixate. The adoption of the saliency detection module releases the HTM network from memorizing redundant information and augments the classification accuracy. The efficiency of the proposed framework has been experimentally evaluated in the ETH-80 dataset, and the classification accuracy has been found to be greater than other HTM systems.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Object recognition using saliency maps and HTM learning\",\"authors\":\"I. Kostavelis, L. Nalpantidis, A. Gasteratos\",\"doi\":\"10.1109/IST.2012.6295575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a pattern classification and object recognition approach based on bio-inspired techniques is presented. It exploits the Hierarchical Temporal Memory (HTM) topology, which imitates human neocortex for recognition and categorization tasks. The HTM comprises a hierarchical tree structure that exploits enhanced spatiotemporal modules to memorize objects appearing in various orientations. In accordance with HTM's biological inspiration, human vision mechanisms can be used to preprocess the input images. Therefore, the input images undergo a saliency computation step, revealing the plausible information of the scene, where a human might fixate. The adoption of the saliency detection module releases the HTM network from memorizing redundant information and augments the classification accuracy. The efficiency of the proposed framework has been experimentally evaluated in the ETH-80 dataset, and the classification accuracy has been found to be greater than other HTM systems.\",\"PeriodicalId\":213330,\"journal\":{\"name\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2012.6295575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种基于仿生技术的模式分类和目标识别方法。它利用分层时间记忆(HTM)拓扑结构,该拓扑结构模仿人类新皮层进行识别和分类任务。HTM包括一个分层树结构,利用增强的时空模块来记忆出现在不同方向的对象。根据HTM的生物学灵感,可以利用人类视觉机制对输入图像进行预处理。因此,输入图像经过显著性计算步骤,揭示人类可能关注的场景的可信信息。显著性检测模块的采用将HTM网络从冗余信息的记忆中解放出来,提高了分类精度。在ETH-80数据集上对该框架的效率进行了实验评估,发现其分类精度高于其他HTM系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object recognition using saliency maps and HTM learning
In this paper a pattern classification and object recognition approach based on bio-inspired techniques is presented. It exploits the Hierarchical Temporal Memory (HTM) topology, which imitates human neocortex for recognition and categorization tasks. The HTM comprises a hierarchical tree structure that exploits enhanced spatiotemporal modules to memorize objects appearing in various orientations. In accordance with HTM's biological inspiration, human vision mechanisms can be used to preprocess the input images. Therefore, the input images undergo a saliency computation step, revealing the plausible information of the scene, where a human might fixate. The adoption of the saliency detection module releases the HTM network from memorizing redundant information and augments the classification accuracy. The efficiency of the proposed framework has been experimentally evaluated in the ETH-80 dataset, and the classification accuracy has been found to be greater than other HTM systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信