R. Al-Omari, G. Manimaran, M. Salapaka, Arun Kumar Somani
{"title":"基于执行时间估计的多处理器系统实时任务开环和闭环调度新算法","authors":"R. Al-Omari, G. Manimaran, M. Salapaka, Arun Kumar Somani","doi":"10.1109/IPDPS.2003.1213081","DOIUrl":null,"url":null,"abstract":"Most dynamic real-time scheduling algorithms are open-loop in nature meaning that they do not dynamically adjust their behavior using the performance at run-time. When accurate workload models are not available, such a scheduling can result in a highly underutilized system based on an extremely pessimistic estimation of workload. In recent years, \"closed-loop\" scheduling is gaining importance due to its applicability to many real-world problems wherein the feedback information can be exploited efficiently to adjust system parameters, thereby improving the performance. In this paper, we first propose an open-loop dynamic scheduling algorithm that employs overlap in order to provide flexibility in task execution times. Secondly, we propose a novel closed-loop approach for dynamically estimating the execution time of tasks based on both deadline miss ratio and task rejection ratio. This approach is highly preferable for firm real-time systems since it provides a firm performance guarantee. We evaluate the performance of the open-loop and the closed-loop approaches by simulation and modeling. Our studies show that the closed-loop scheduling offers a significantly better performance (20% gain) over the open-loop scheduling under all the relevant conditions we simulated.","PeriodicalId":177848,"journal":{"name":"Proceedings International Parallel and Distributed Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Novel algorithms for open-loop and closed-loop scheduling of real-time tasks in multiprocessor systems based on execution time estimation\",\"authors\":\"R. Al-Omari, G. Manimaran, M. Salapaka, Arun Kumar Somani\",\"doi\":\"10.1109/IPDPS.2003.1213081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most dynamic real-time scheduling algorithms are open-loop in nature meaning that they do not dynamically adjust their behavior using the performance at run-time. When accurate workload models are not available, such a scheduling can result in a highly underutilized system based on an extremely pessimistic estimation of workload. In recent years, \\\"closed-loop\\\" scheduling is gaining importance due to its applicability to many real-world problems wherein the feedback information can be exploited efficiently to adjust system parameters, thereby improving the performance. In this paper, we first propose an open-loop dynamic scheduling algorithm that employs overlap in order to provide flexibility in task execution times. Secondly, we propose a novel closed-loop approach for dynamically estimating the execution time of tasks based on both deadline miss ratio and task rejection ratio. This approach is highly preferable for firm real-time systems since it provides a firm performance guarantee. We evaluate the performance of the open-loop and the closed-loop approaches by simulation and modeling. Our studies show that the closed-loop scheduling offers a significantly better performance (20% gain) over the open-loop scheduling under all the relevant conditions we simulated.\",\"PeriodicalId\":177848,\"journal\":{\"name\":\"Proceedings International Parallel and Distributed Processing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Parallel and Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2003.1213081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Parallel and Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2003.1213081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel algorithms for open-loop and closed-loop scheduling of real-time tasks in multiprocessor systems based on execution time estimation
Most dynamic real-time scheduling algorithms are open-loop in nature meaning that they do not dynamically adjust their behavior using the performance at run-time. When accurate workload models are not available, such a scheduling can result in a highly underutilized system based on an extremely pessimistic estimation of workload. In recent years, "closed-loop" scheduling is gaining importance due to its applicability to many real-world problems wherein the feedback information can be exploited efficiently to adjust system parameters, thereby improving the performance. In this paper, we first propose an open-loop dynamic scheduling algorithm that employs overlap in order to provide flexibility in task execution times. Secondly, we propose a novel closed-loop approach for dynamically estimating the execution time of tasks based on both deadline miss ratio and task rejection ratio. This approach is highly preferable for firm real-time systems since it provides a firm performance guarantee. We evaluate the performance of the open-loop and the closed-loop approaches by simulation and modeling. Our studies show that the closed-loop scheduling offers a significantly better performance (20% gain) over the open-loop scheduling under all the relevant conditions we simulated.