{"title":"Kantorovich型积分对Dunkl算子的自适应","authors":"Gürhan Içöz, Esma Gökmen","doi":"10.54287/gujsa.1148199","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to show the adaptation of the Kantorovich type integral to the Dunkl operator. This article gives a sequence of operators to get an approximation result. The variant of the operator which is the Kantorovich type integral has been given and examined the approximation ratio by the first and second order modulus of continuity. The approximation order of the operators is shown by the first order modulus of continuity and the Lipschitz class functions.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation of the Kantorovich Type Integral to the Dunkl Operator\",\"authors\":\"Gürhan Içöz, Esma Gökmen\",\"doi\":\"10.54287/gujsa.1148199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to show the adaptation of the Kantorovich type integral to the Dunkl operator. This article gives a sequence of operators to get an approximation result. The variant of the operator which is the Kantorovich type integral has been given and examined the approximation ratio by the first and second order modulus of continuity. The approximation order of the operators is shown by the first order modulus of continuity and the Lipschitz class functions.\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1148199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1148199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptation of the Kantorovich Type Integral to the Dunkl Operator
The purpose of this article is to show the adaptation of the Kantorovich type integral to the Dunkl operator. This article gives a sequence of operators to get an approximation result. The variant of the operator which is the Kantorovich type integral has been given and examined the approximation ratio by the first and second order modulus of continuity. The approximation order of the operators is shown by the first order modulus of continuity and the Lipschitz class functions.