{"title":"在人工神经细胞中重建振荡行为","authors":"S. Wolpert, A.E. Chinwalla","doi":"10.1109/NEBC.1993.404398","DOIUrl":null,"url":null,"abstract":"The recreation of the phenomenon of cyclic inhibition between two artificial nerve cells is discussed. Implemented by means of postinhibitory rebound, it was achieved in a mutually inhibiting pair of identical nerve cell circuits, or neuromimes. Each neuromime is nominally self-excitatory, with a single inhibitory input, derived from the output of its counterpart. Postinhibitory rebound is accomplished by dynamically varying the synaptic weight of that inhibitory input. The neuromime employed is a comprehensive VLSI-based circuit with a host of features attributable to biological nerve cells. It was fabricated in two-micron CMOS technology with a total chip area of 0.6 square millimeters, and requires only a few passive discrete components for support and adjustment.<<ETX>>","PeriodicalId":159783,"journal":{"name":"1993 IEEE Annual Northeast Bioengineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recreating oscillatory behavior in artificial nerve cells\",\"authors\":\"S. Wolpert, A.E. Chinwalla\",\"doi\":\"10.1109/NEBC.1993.404398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recreation of the phenomenon of cyclic inhibition between two artificial nerve cells is discussed. Implemented by means of postinhibitory rebound, it was achieved in a mutually inhibiting pair of identical nerve cell circuits, or neuromimes. Each neuromime is nominally self-excitatory, with a single inhibitory input, derived from the output of its counterpart. Postinhibitory rebound is accomplished by dynamically varying the synaptic weight of that inhibitory input. The neuromime employed is a comprehensive VLSI-based circuit with a host of features attributable to biological nerve cells. It was fabricated in two-micron CMOS technology with a total chip area of 0.6 square millimeters, and requires only a few passive discrete components for support and adjustment.<<ETX>>\",\"PeriodicalId\":159783,\"journal\":{\"name\":\"1993 IEEE Annual Northeast Bioengineering Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE Annual Northeast Bioengineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEBC.1993.404398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Annual Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.1993.404398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recreating oscillatory behavior in artificial nerve cells
The recreation of the phenomenon of cyclic inhibition between two artificial nerve cells is discussed. Implemented by means of postinhibitory rebound, it was achieved in a mutually inhibiting pair of identical nerve cell circuits, or neuromimes. Each neuromime is nominally self-excitatory, with a single inhibitory input, derived from the output of its counterpart. Postinhibitory rebound is accomplished by dynamically varying the synaptic weight of that inhibitory input. The neuromime employed is a comprehensive VLSI-based circuit with a host of features attributable to biological nerve cells. It was fabricated in two-micron CMOS technology with a total chip area of 0.6 square millimeters, and requires only a few passive discrete components for support and adjustment.<>