在人工神经细胞中重建振荡行为

S. Wolpert, A.E. Chinwalla
{"title":"在人工神经细胞中重建振荡行为","authors":"S. Wolpert, A.E. Chinwalla","doi":"10.1109/NEBC.1993.404398","DOIUrl":null,"url":null,"abstract":"The recreation of the phenomenon of cyclic inhibition between two artificial nerve cells is discussed. Implemented by means of postinhibitory rebound, it was achieved in a mutually inhibiting pair of identical nerve cell circuits, or neuromimes. Each neuromime is nominally self-excitatory, with a single inhibitory input, derived from the output of its counterpart. Postinhibitory rebound is accomplished by dynamically varying the synaptic weight of that inhibitory input. The neuromime employed is a comprehensive VLSI-based circuit with a host of features attributable to biological nerve cells. It was fabricated in two-micron CMOS technology with a total chip area of 0.6 square millimeters, and requires only a few passive discrete components for support and adjustment.<<ETX>>","PeriodicalId":159783,"journal":{"name":"1993 IEEE Annual Northeast Bioengineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recreating oscillatory behavior in artificial nerve cells\",\"authors\":\"S. Wolpert, A.E. Chinwalla\",\"doi\":\"10.1109/NEBC.1993.404398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recreation of the phenomenon of cyclic inhibition between two artificial nerve cells is discussed. Implemented by means of postinhibitory rebound, it was achieved in a mutually inhibiting pair of identical nerve cell circuits, or neuromimes. Each neuromime is nominally self-excitatory, with a single inhibitory input, derived from the output of its counterpart. Postinhibitory rebound is accomplished by dynamically varying the synaptic weight of that inhibitory input. The neuromime employed is a comprehensive VLSI-based circuit with a host of features attributable to biological nerve cells. It was fabricated in two-micron CMOS technology with a total chip area of 0.6 square millimeters, and requires only a few passive discrete components for support and adjustment.<<ETX>>\",\"PeriodicalId\":159783,\"journal\":{\"name\":\"1993 IEEE Annual Northeast Bioengineering Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE Annual Northeast Bioengineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEBC.1993.404398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE Annual Northeast Bioengineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEBC.1993.404398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了人工神经细胞间循环抑制现象的再现。通过抑制后反弹的方式实现,它是在一对相互抑制的相同神经细胞回路或神经拟态中实现的。每个神经mime在名义上都是自我兴奋的,只有一个抑制性输入,来自于对应的输出。抑制后反弹是通过动态改变抑制输入的突触权重来完成的。所采用的神经mime是一个全面的基于vlsi的电路,具有许多可归因于生物神经细胞的特征。它采用两微米CMOS技术制造,总芯片面积为0.6平方毫米,仅需要少量无源分立元件进行支撑和调整
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recreating oscillatory behavior in artificial nerve cells
The recreation of the phenomenon of cyclic inhibition between two artificial nerve cells is discussed. Implemented by means of postinhibitory rebound, it was achieved in a mutually inhibiting pair of identical nerve cell circuits, or neuromimes. Each neuromime is nominally self-excitatory, with a single inhibitory input, derived from the output of its counterpart. Postinhibitory rebound is accomplished by dynamically varying the synaptic weight of that inhibitory input. The neuromime employed is a comprehensive VLSI-based circuit with a host of features attributable to biological nerve cells. It was fabricated in two-micron CMOS technology with a total chip area of 0.6 square millimeters, and requires only a few passive discrete components for support and adjustment.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信