连续贝叶斯网络的学习集成:在降雨预测中的应用

Scott Hellman, A. McGovern, M. Xue
{"title":"连续贝叶斯网络的学习集成:在降雨预测中的应用","authors":"Scott Hellman, A. McGovern, M. Xue","doi":"10.1109/CIDU.2012.6382191","DOIUrl":null,"url":null,"abstract":"We introduce Ensembled Continuous Bayesian Networks (ECBN), an ensemble approach to learning salient dependence relationships and to predicting values for continuous data. By training individual Bayesian networks on both a subset of the data (bagging) and a subset of the attributes in the data (randomization), ECBN produces models for continuous domains that can be used to identify important variables in a dataset and to identify relationships between those variables. We use linear Gaussian distributions within our ensembles, providing efficient network-level inference. By ensembling these networks, we are able to represent nonlinear relationships. We empirically demonstrate that ECBN outperforms the meteorological forecast on a rainfall prediction task across the United States, and performs comparably to results reported for Random Forests.","PeriodicalId":270712,"journal":{"name":"2012 Conference on Intelligent Data Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Learning ensembles of Continuous Bayesian Networks: An application to rainfall prediction\",\"authors\":\"Scott Hellman, A. McGovern, M. Xue\",\"doi\":\"10.1109/CIDU.2012.6382191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Ensembled Continuous Bayesian Networks (ECBN), an ensemble approach to learning salient dependence relationships and to predicting values for continuous data. By training individual Bayesian networks on both a subset of the data (bagging) and a subset of the attributes in the data (randomization), ECBN produces models for continuous domains that can be used to identify important variables in a dataset and to identify relationships between those variables. We use linear Gaussian distributions within our ensembles, providing efficient network-level inference. By ensembling these networks, we are able to represent nonlinear relationships. We empirically demonstrate that ECBN outperforms the meteorological forecast on a rainfall prediction task across the United States, and performs comparably to results reported for Random Forests.\",\"PeriodicalId\":270712,\"journal\":{\"name\":\"2012 Conference on Intelligent Data Understanding\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Intelligent Data Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDU.2012.6382191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Intelligent Data Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDU.2012.6382191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们介绍了集成连续贝叶斯网络(ECBN),这是一种学习显著依赖关系和预测连续数据值的集成方法。通过在数据子集(套袋)和数据属性子集(随机化)上训练单个贝叶斯网络,ECBN生成连续域的模型,可用于识别数据集中的重要变量,并识别这些变量之间的关系。我们在我们的集成中使用线性高斯分布,提供有效的网络级推理。通过集成这些网络,我们能够表示非线性关系。我们通过经验证明,ECBN在美国各地的降雨预测任务上优于气象预报,并且与随机森林报告的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning ensembles of Continuous Bayesian Networks: An application to rainfall prediction
We introduce Ensembled Continuous Bayesian Networks (ECBN), an ensemble approach to learning salient dependence relationships and to predicting values for continuous data. By training individual Bayesian networks on both a subset of the data (bagging) and a subset of the attributes in the data (randomization), ECBN produces models for continuous domains that can be used to identify important variables in a dataset and to identify relationships between those variables. We use linear Gaussian distributions within our ensembles, providing efficient network-level inference. By ensembling these networks, we are able to represent nonlinear relationships. We empirically demonstrate that ECBN outperforms the meteorological forecast on a rainfall prediction task across the United States, and performs comparably to results reported for Random Forests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信