空中机器人导航的视觉惯性教学和重复

M. Nitsche, Facundo Pessacg, Javier Civera
{"title":"空中机器人导航的视觉惯性教学和重复","authors":"M. Nitsche, Facundo Pessacg, Javier Civera","doi":"10.1109/ECMR.2019.8870926","DOIUrl":null,"url":null,"abstract":"This paper presents a Teach & Repeat (T&R) algorithm from stereo and inertial data, targeting Unmanned Aerial Vehicles with limited on-board computational resources. We propose a tightly-coupled, relative formulation of the visual-inertial constraints that fits the T&R application. In order to achieve real-time operation on limited hardware, we constraint it to motion-only visual-inertial Bundle Adjustment and solve for the minimal set of states. For the repeat phase, we show how to generate a trajectory and smoothly follow it with a constantly changing reference frame. The proposed method is validated with the sequences of the EuRoC dataset as well as within a simulated environment, running on a standard laptop PC and on a low-cost Odroid X-U4 computer.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Visual-Inertial Teach & Repeat for Aerial Robot Navigation\",\"authors\":\"M. Nitsche, Facundo Pessacg, Javier Civera\",\"doi\":\"10.1109/ECMR.2019.8870926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Teach & Repeat (T&R) algorithm from stereo and inertial data, targeting Unmanned Aerial Vehicles with limited on-board computational resources. We propose a tightly-coupled, relative formulation of the visual-inertial constraints that fits the T&R application. In order to achieve real-time operation on limited hardware, we constraint it to motion-only visual-inertial Bundle Adjustment and solve for the minimal set of states. For the repeat phase, we show how to generate a trajectory and smoothly follow it with a constantly changing reference frame. The proposed method is validated with the sequences of the EuRoC dataset as well as within a simulated environment, running on a standard laptop PC and on a low-cost Odroid X-U4 computer.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对机载计算资源有限的无人机,提出了一种基于立体和惯性数据的Teach & Repeat (T&R)算法。我们提出了一个紧耦合的,相对的视觉惯性约束公式,适合T&R应用。为了在有限的硬件条件下实现实时操作,我们将其约束为仅运动的视觉惯性束调整,并求解最小状态集。对于重复阶段,我们展示了如何生成一个轨迹,并在不断变化的参考系下平滑地跟随它。该方法通过EuRoC数据集序列以及在标准笔记本电脑和低成本Odroid X-U4计算机上运行的模拟环境进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual-Inertial Teach & Repeat for Aerial Robot Navigation
This paper presents a Teach & Repeat (T&R) algorithm from stereo and inertial data, targeting Unmanned Aerial Vehicles with limited on-board computational resources. We propose a tightly-coupled, relative formulation of the visual-inertial constraints that fits the T&R application. In order to achieve real-time operation on limited hardware, we constraint it to motion-only visual-inertial Bundle Adjustment and solve for the minimal set of states. For the repeat phase, we show how to generate a trajectory and smoothly follow it with a constantly changing reference frame. The proposed method is validated with the sequences of the EuRoC dataset as well as within a simulated environment, running on a standard laptop PC and on a low-cost Odroid X-U4 computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信