基于正交笛卡尔张量的机械臂动力学高效建模与计算

C. Balafoutis, Rajnikant V. Patel, P. Misra
{"title":"基于正交笛卡尔张量的机械臂动力学高效建模与计算","authors":"C. Balafoutis, Rajnikant V. Patel, P. Misra","doi":"10.1109/56.9304","DOIUrl":null,"url":null,"abstract":"The authors use orthogonal second-order Cartesian tensors to formulate the Newton-Euler dynamic equations for a robot manipulator. Based on this formulation, they develop two efficient recursive algorithms for computing the joint actuator torques/forces. The proposed algorithms are applicable to all rigid-link manipulators with open-chain kinematic structures with revolute and/or prismatic joints. An efficient implementation of one of the proposed algorithms shows that the joint torques/forces for a six-degrees-of-freedom manipulator with revolute joints, can be computed in approximately 489 multiplications and 420 additions. For manipulators with zero or 90 degrees twist angles, the required computations are reduced to 388 multiplications and 370 additions. For manipulators with even simpler geometric structures, these arithmetic operations can be further reduced to 277 multiplications and 255 additions. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Efficient modeling and computation of manipulator dynamics using orthogonal Cartesian tensors\",\"authors\":\"C. Balafoutis, Rajnikant V. Patel, P. Misra\",\"doi\":\"10.1109/56.9304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors use orthogonal second-order Cartesian tensors to formulate the Newton-Euler dynamic equations for a robot manipulator. Based on this formulation, they develop two efficient recursive algorithms for computing the joint actuator torques/forces. The proposed algorithms are applicable to all rigid-link manipulators with open-chain kinematic structures with revolute and/or prismatic joints. An efficient implementation of one of the proposed algorithms shows that the joint torques/forces for a six-degrees-of-freedom manipulator with revolute joints, can be computed in approximately 489 multiplications and 420 additions. For manipulators with zero or 90 degrees twist angles, the required computations are reduced to 388 multiplications and 370 additions. For manipulators with even simpler geometric structures, these arithmetic operations can be further reduced to 277 multiplications and 255 additions. >\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/56.9304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.9304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

利用正交二阶笛卡尔张量,建立了机械臂的牛顿-欧拉动力学方程。基于此公式,他们开发了两种有效的递归算法来计算关节执行机构的扭矩/力。所提出的算法适用于所有具有旋转关节和/或移动关节的开链运动结构的刚性连杆机械臂。其中一种算法的有效实现表明,具有旋转关节的六自由度机械臂的关节扭矩/力可以通过大约489次乘法和420次加法来计算。对于具有0度或90度扭转角的机械手,所需的计算减少到388次乘法和370次加法。对于具有更简单几何结构的操纵器,这些算术运算可以进一步减少到277次乘法和255次加法。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient modeling and computation of manipulator dynamics using orthogonal Cartesian tensors
The authors use orthogonal second-order Cartesian tensors to formulate the Newton-Euler dynamic equations for a robot manipulator. Based on this formulation, they develop two efficient recursive algorithms for computing the joint actuator torques/forces. The proposed algorithms are applicable to all rigid-link manipulators with open-chain kinematic structures with revolute and/or prismatic joints. An efficient implementation of one of the proposed algorithms shows that the joint torques/forces for a six-degrees-of-freedom manipulator with revolute joints, can be computed in approximately 489 multiplications and 420 additions. For manipulators with zero or 90 degrees twist angles, the required computations are reduced to 388 multiplications and 370 additions. For manipulators with even simpler geometric structures, these arithmetic operations can be further reduced to 277 multiplications and 255 additions. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信