预测运动障碍用户的笔划手势输入性能

O. Ungurean, Radu-Daniel Vatavu, Luis A. Leiva, Daniel Martín-Albo
{"title":"预测运动障碍用户的笔划手势输入性能","authors":"O. Ungurean, Radu-Daniel Vatavu, Luis A. Leiva, Daniel Martín-Albo","doi":"10.1145/3236112.3236116","DOIUrl":null,"url":null,"abstract":"The performance of users with motor impairments with stroke gesture input on touchscreens has been little examined so far, despite the wide prevalence of mobile devices and the benefits they bring to increase users' quality of life. In this work, we present the first empirical results on this subject matter from 915 gestures collected from 10 participants with motor impairments (spastic tetraplegia and tetraparesis) and 10 participants without known impairments. We report that different motor abilities lead to different performance in terms of gesture production time. We also show that the production times of gestures articulated by users with motor impairments can be accurately predicted with an absolute error of just 150 ms and a relative error of only 3.7% with respect to actual times (user-independent tests), a result that will enable designers to estimate human performance a priori when prototyping gesture UIs for users with motor impairments.","PeriodicalId":401548,"journal":{"name":"Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting stroke gesture input performance for users with motor impairments\",\"authors\":\"O. Ungurean, Radu-Daniel Vatavu, Luis A. Leiva, Daniel Martín-Albo\",\"doi\":\"10.1145/3236112.3236116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of users with motor impairments with stroke gesture input on touchscreens has been little examined so far, despite the wide prevalence of mobile devices and the benefits they bring to increase users' quality of life. In this work, we present the first empirical results on this subject matter from 915 gestures collected from 10 participants with motor impairments (spastic tetraplegia and tetraparesis) and 10 participants without known impairments. We report that different motor abilities lead to different performance in terms of gesture production time. We also show that the production times of gestures articulated by users with motor impairments can be accurately predicted with an absolute error of just 150 ms and a relative error of only 3.7% with respect to actual times (user-independent tests), a result that will enable designers to estimate human performance a priori when prototyping gesture UIs for users with motor impairments.\",\"PeriodicalId\":401548,\"journal\":{\"name\":\"Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3236112.3236116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3236112.3236116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

尽管移动设备的广泛普及以及它们为提高用户的生活质量带来的好处,但到目前为止,运动障碍用户在触摸屏上进行笔划手势输入的表现还很少得到研究。在这项工作中,我们从10名有运动障碍的参与者(痉挛性四肢瘫痪和四肢瘫痪)和10名没有已知障碍的参与者中收集了915个手势,提出了关于这一主题的第一个实证结果。我们报告了不同的运动能力导致手势产生时间方面的不同表现。我们还表明,运动障碍用户的手势制作时间可以准确地预测,绝对误差仅为150毫秒,相对于实际时间(用户独立测试)的相对误差仅为3.7%,这一结果将使设计师能够在为运动障碍用户设计手势ui时先验地估计人类的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting stroke gesture input performance for users with motor impairments
The performance of users with motor impairments with stroke gesture input on touchscreens has been little examined so far, despite the wide prevalence of mobile devices and the benefits they bring to increase users' quality of life. In this work, we present the first empirical results on this subject matter from 915 gestures collected from 10 participants with motor impairments (spastic tetraplegia and tetraparesis) and 10 participants without known impairments. We report that different motor abilities lead to different performance in terms of gesture production time. We also show that the production times of gestures articulated by users with motor impairments can be accurately predicted with an absolute error of just 150 ms and a relative error of only 3.7% with respect to actual times (user-independent tests), a result that will enable designers to estimate human performance a priori when prototyping gesture UIs for users with motor impairments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信