多值函数的纠错决策图

Helena Astola, S. Stankovic, J. Astola
{"title":"多值函数的纠错决策图","authors":"Helena Astola, S. Stankovic, J. Astola","doi":"10.1109/ISMVL.2011.33","DOIUrl":null,"url":null,"abstract":"Decision diagrams are an efficient way of representing switching functions and they are easily mapped to technology. The layout of a circuit is directly determined by the shape of the decision diagram. By combining the theory of error-correcting codes with decision diagrams, it is possible to form robust circuit layouts, which can detect and correct errors. The method of constructing robust decision diagrams is analogous to the decoding process of linear codes, and can be based on simple matrix and look-up operations. In this paper, we focus on error-correcting decision diagrams for multiple-valued functions, considering them for both the Hamming metric and the Lee metric. The performance of robust decision diagrams is analyzed by determining the error probabilities for such constructions. Depending on the error-correcting properties of the code used in the construction, the error probability of a circuit can be significantly decreased by a robust decision diagram.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Error-Correcting Decision Diagrams for Multiple-Valued Functions\",\"authors\":\"Helena Astola, S. Stankovic, J. Astola\",\"doi\":\"10.1109/ISMVL.2011.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision diagrams are an efficient way of representing switching functions and they are easily mapped to technology. The layout of a circuit is directly determined by the shape of the decision diagram. By combining the theory of error-correcting codes with decision diagrams, it is possible to form robust circuit layouts, which can detect and correct errors. The method of constructing robust decision diagrams is analogous to the decoding process of linear codes, and can be based on simple matrix and look-up operations. In this paper, we focus on error-correcting decision diagrams for multiple-valued functions, considering them for both the Hamming metric and the Lee metric. The performance of robust decision diagrams is analyzed by determining the error probabilities for such constructions. Depending on the error-correcting properties of the code used in the construction, the error probability of a circuit can be significantly decreased by a robust decision diagram.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

决策图是一种表示切换函数的有效方法,并且很容易映射到技术上。电路的布局直接取决于决策图的形状。将纠错码理论与决策图相结合,可以形成鲁棒的电路布局,实现纠错检测和纠错。构造鲁棒决策图的方法类似于线性码的解码过程,可以基于简单的矩阵和查找操作。本文主要研究了多值函数的纠错决策图,同时考虑了Hamming度量和Lee度量。通过确定鲁棒决策图的错误概率来分析鲁棒决策图的性能。根据构造中使用的代码的纠错特性,鲁棒决策图可以显著降低电路的错误概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error-Correcting Decision Diagrams for Multiple-Valued Functions
Decision diagrams are an efficient way of representing switching functions and they are easily mapped to technology. The layout of a circuit is directly determined by the shape of the decision diagram. By combining the theory of error-correcting codes with decision diagrams, it is possible to form robust circuit layouts, which can detect and correct errors. The method of constructing robust decision diagrams is analogous to the decoding process of linear codes, and can be based on simple matrix and look-up operations. In this paper, we focus on error-correcting decision diagrams for multiple-valued functions, considering them for both the Hamming metric and the Lee metric. The performance of robust decision diagrams is analyzed by determining the error probabilities for such constructions. Depending on the error-correcting properties of the code used in the construction, the error probability of a circuit can be significantly decreased by a robust decision diagram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信