MEMS电容式压力传感器硅片上SiC/SiN层直接键合的表征

Noraini Marsi, B. Majlis, A. A. Hamzah, Faisal Mohd Yasin
{"title":"MEMS电容式压力传感器硅片上SiC/SiN层直接键合的表征","authors":"Noraini Marsi, B. Majlis, A. A. Hamzah, Faisal Mohd Yasin","doi":"10.1109/RSM.2013.6706470","DOIUrl":null,"url":null,"abstract":"Two silicon wafer size of 2.5 mm × 2.5 mm with 1 μm LPCVD silicon carbide (SiC) and 200 nm LPCVD silicon nitride, respectively has been characterize direct bonding between silicon nitride and silicon carbide surfaces. Chemical-mechanical polishing (CMP) treatment processes were performed to reduce the surface roughness of both surfaces before the surface are bonded to each other. The surface roughness shows about 1 μm before CMP treatment, while the smoothness of the surface roughness values as low as 20 nm was obtained after CMP treatment as measured by infinite focus microscopy (IFM). The interface between SiC/SiN layers on Si wafer was inspected by scanning electron microscopy (SEM). Heat treatment with different annealing temperatures is indentified that an optimized annealing process was at 400 °C for 2 hours to allow the bond-forming interface between silicon nitride and silicon carbide surfaces being bonded at 8.3467 MPa.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization direct bonding of SiC/SiN layer on Si wafer for MEMS capacitive pressure sensor\",\"authors\":\"Noraini Marsi, B. Majlis, A. A. Hamzah, Faisal Mohd Yasin\",\"doi\":\"10.1109/RSM.2013.6706470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two silicon wafer size of 2.5 mm × 2.5 mm with 1 μm LPCVD silicon carbide (SiC) and 200 nm LPCVD silicon nitride, respectively has been characterize direct bonding between silicon nitride and silicon carbide surfaces. Chemical-mechanical polishing (CMP) treatment processes were performed to reduce the surface roughness of both surfaces before the surface are bonded to each other. The surface roughness shows about 1 μm before CMP treatment, while the smoothness of the surface roughness values as low as 20 nm was obtained after CMP treatment as measured by infinite focus microscopy (IFM). The interface between SiC/SiN layers on Si wafer was inspected by scanning electron microscopy (SEM). Heat treatment with different annealing temperatures is indentified that an optimized annealing process was at 400 °C for 2 hours to allow the bond-forming interface between silicon nitride and silicon carbide surfaces being bonded at 8.3467 MPa.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用1 μm LPCVD碳化硅(SiC)和200 nm LPCVD氮化硅分别制备了两种尺寸为2.5 mm × 2.5 mm的硅片,表征了氮化硅与碳化硅表面的直接键合。采用化学机械抛光(CMP)处理工艺,在表面粘合之前降低两个表面的表面粗糙度。CMP处理前的表面粗糙度约为1 μm,而无限聚焦显微镜(IFM)测量CMP处理后的表面粗糙度值低至20 nm。用扫描电镜(SEM)观察了硅片上SiC/SiN层之间的界面。确定了不同退火温度下的热处理工艺,最优退火工艺为在8.3467 MPa的温度下,在400℃下,保温2小时,使氮化硅和碳化硅表面之间形成键合界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization direct bonding of SiC/SiN layer on Si wafer for MEMS capacitive pressure sensor
Two silicon wafer size of 2.5 mm × 2.5 mm with 1 μm LPCVD silicon carbide (SiC) and 200 nm LPCVD silicon nitride, respectively has been characterize direct bonding between silicon nitride and silicon carbide surfaces. Chemical-mechanical polishing (CMP) treatment processes were performed to reduce the surface roughness of both surfaces before the surface are bonded to each other. The surface roughness shows about 1 μm before CMP treatment, while the smoothness of the surface roughness values as low as 20 nm was obtained after CMP treatment as measured by infinite focus microscopy (IFM). The interface between SiC/SiN layers on Si wafer was inspected by scanning electron microscopy (SEM). Heat treatment with different annealing temperatures is indentified that an optimized annealing process was at 400 °C for 2 hours to allow the bond-forming interface between silicon nitride and silicon carbide surfaces being bonded at 8.3467 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信