异构系统中加速函数的可调自愈方法

M. Riazati, Tara Ghasempouri, M. Daneshtalab, J. Raik, Mikael Sjödin, B. Lisper
{"title":"异构系统中加速函数的可调自愈方法","authors":"M. Riazati, Tara Ghasempouri, M. Daneshtalab, J. Raik, Mikael Sjödin, B. Lisper","doi":"10.1109/DSD51259.2020.00104","DOIUrl":null,"url":null,"abstract":"Self-healing is a promising approach for designing reliable digital systems. It refers to the ability of a system to detect faults and automatically fixing them to avoid total failure. With the development of digital systems, heterogeneous systems, in which some parts of the system are executed on the programmable logic, and some other parts run on the processing elements (CPU), are becoming more prevalent. In this work, we propose an adjustable self-healing method that is applicable to heterogeneous systems with accelerated functions and enables the designers to add the self-healing feature to the design. In this method, by manipulating the software codes that are being executed on the processing element, we add the ability to verify the accelerated functions on the programmable logic and heal the possible failures to the system. This is done not only in a straightforward manner but also without being forced to choose a specific reliability-overhead point. The designer will have the option to select the optimum configuration for a desired reliability level. Experimental results on a large design including several accelerated functions are provided and show 42% improvement of reliability by having 27% overhead, as an example of the reliability-overhead point.","PeriodicalId":128527,"journal":{"name":"2020 23rd Euromicro Conference on Digital System Design (DSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adjustable self-healing methodology for accelerated functions in heterogeneous systems\",\"authors\":\"M. Riazati, Tara Ghasempouri, M. Daneshtalab, J. Raik, Mikael Sjödin, B. Lisper\",\"doi\":\"10.1109/DSD51259.2020.00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-healing is a promising approach for designing reliable digital systems. It refers to the ability of a system to detect faults and automatically fixing them to avoid total failure. With the development of digital systems, heterogeneous systems, in which some parts of the system are executed on the programmable logic, and some other parts run on the processing elements (CPU), are becoming more prevalent. In this work, we propose an adjustable self-healing method that is applicable to heterogeneous systems with accelerated functions and enables the designers to add the self-healing feature to the design. In this method, by manipulating the software codes that are being executed on the processing element, we add the ability to verify the accelerated functions on the programmable logic and heal the possible failures to the system. This is done not only in a straightforward manner but also without being forced to choose a specific reliability-overhead point. The designer will have the option to select the optimum configuration for a desired reliability level. Experimental results on a large design including several accelerated functions are provided and show 42% improvement of reliability by having 27% overhead, as an example of the reliability-overhead point.\",\"PeriodicalId\":128527,\"journal\":{\"name\":\"2020 23rd Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 23rd Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD51259.2020.00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 23rd Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD51259.2020.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自我修复是设计可靠数字系统的一种很有前途的方法。它指的是系统检测故障并自动修复故障以避免完全故障的能力。随着数字系统的发展,系统的一部分在可编程逻辑上运行,另一部分在处理单元(CPU)上运行的异构系统变得越来越普遍。在这项工作中,我们提出了一种可调节的自修复方法,该方法适用于具有加速功能的异构系统,并使设计者能够将自修复功能添加到设计中。在这种方法中,通过操纵正在处理单元上执行的软件代码,我们增加了验证可编程逻辑上的加速功能和修复系统可能出现的故障的能力。这不仅以一种直接的方式完成,而且不必被迫选择特定的可靠性开销点。设计师将有选择的最佳配置为期望的可靠性水平的选项。在包含多个加速功能的大型设计上的实验结果表明,以27%的开销为例,可靠性提高了42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjustable self-healing methodology for accelerated functions in heterogeneous systems
Self-healing is a promising approach for designing reliable digital systems. It refers to the ability of a system to detect faults and automatically fixing them to avoid total failure. With the development of digital systems, heterogeneous systems, in which some parts of the system are executed on the programmable logic, and some other parts run on the processing elements (CPU), are becoming more prevalent. In this work, we propose an adjustable self-healing method that is applicable to heterogeneous systems with accelerated functions and enables the designers to add the self-healing feature to the design. In this method, by manipulating the software codes that are being executed on the processing element, we add the ability to verify the accelerated functions on the programmable logic and heal the possible failures to the system. This is done not only in a straightforward manner but also without being forced to choose a specific reliability-overhead point. The designer will have the option to select the optimum configuration for a desired reliability level. Experimental results on a large design including several accelerated functions are provided and show 42% improvement of reliability by having 27% overhead, as an example of the reliability-overhead point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信