量子计算机错误率最大迹量的若干性质

Leonid Fedichkin, Andrii Kurkin
{"title":"量子计算机错误率最大迹量的若干性质","authors":"Leonid Fedichkin, Andrii Kurkin","doi":"10.1117/12.2624606","DOIUrl":null,"url":null,"abstract":"Interaction of quantum system with environment makes the system change its coherent dynamics and it is extremely important to estimate this deviation in correct and clear way. In this paper we consider measure of decoherence based on trace norm. This measure is defined as a maximal norm of the density matrix deviation. We establish the property of additivity at short times: the sum of the individual qubit error measures provides an estimate of the error for a multiqubit system. This property is investigated for 2-qubit systems numerically. Rigorous analytical proof of asymptotic additivity is obtained.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of maximal trace measure of quantum computer error rate\",\"authors\":\"Leonid Fedichkin, Andrii Kurkin\",\"doi\":\"10.1117/12.2624606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interaction of quantum system with environment makes the system change its coherent dynamics and it is extremely important to estimate this deviation in correct and clear way. In this paper we consider measure of decoherence based on trace norm. This measure is defined as a maximal norm of the density matrix deviation. We establish the property of additivity at short times: the sum of the individual qubit error measures provides an estimate of the error for a multiqubit system. This property is investigated for 2-qubit systems numerically. Rigorous analytical proof of asymptotic additivity is obtained.\",\"PeriodicalId\":388511,\"journal\":{\"name\":\"International Conference on Micro- and Nano-Electronics\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Micro- and Nano-Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2624606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2624606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子系统与环境的相互作用使系统的相干动力学发生了变化,正确、清晰地估计这种偏差是非常重要的。本文考虑基于迹范数的退相干测度。这个度量被定义为密度矩阵偏差的最大范数。我们建立了短时间内可加性的性质:单个量子位误差度量的总和提供了多量子位系统误差的估计。对2量子位系统的这一性质进行了数值研究。给出了渐近可加性的严格解析证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties of maximal trace measure of quantum computer error rate
Interaction of quantum system with environment makes the system change its coherent dynamics and it is extremely important to estimate this deviation in correct and clear way. In this paper we consider measure of decoherence based on trace norm. This measure is defined as a maximal norm of the density matrix deviation. We establish the property of additivity at short times: the sum of the individual qubit error measures provides an estimate of the error for a multiqubit system. This property is investigated for 2-qubit systems numerically. Rigorous analytical proof of asymptotic additivity is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信