解码自然模式:一种利用深度学习和高分辨率航空图像进行树木检测的创新方法

H. Şenol, Abdurahman Yasin Yiğit
{"title":"解码自然模式:一种利用深度学习和高分辨率航空图像进行树木检测的创新方法","authors":"H. Şenol, Abdurahman Yasin Yiğit","doi":"10.56130/tucbis.1307926","DOIUrl":null,"url":null,"abstract":"This study investigates the application of deep learning algorithms and high-resolution aerial imagery for individual tree detection in urban areas, using a neighborhood in Mersin, Turkey, as a case study. Employing the DeepForest Python package, we utilize high-resolution (7cm) aerial imagery to detect and map the city's tree population accurately. The results showcase an impressive accuracy rate of 80.87%, demonstrating the potential of deep learning in urban forestry applications and contributing to effective urban planning. The information generated from this study is crucial for conserving urban green spaces, enhancing resilience to climate change, and supporting urban biodiversity. While this research is focused on Mersin, the methods employed are globally adaptable, laying a foundation for further refinement and potential identification of different tree species in future work. This investigation highlights the transformative role of advanced technology in fostering sustainable urban environments.","PeriodicalId":285163,"journal":{"name":"Türkiye Coğrafi Bilgi Sistemleri Dergisi","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Nature's Patterns: An Innovative Approach to Tree Detection Using Deep Learning and High-Resolution Aerial Imagery\",\"authors\":\"H. Şenol, Abdurahman Yasin Yiğit\",\"doi\":\"10.56130/tucbis.1307926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the application of deep learning algorithms and high-resolution aerial imagery for individual tree detection in urban areas, using a neighborhood in Mersin, Turkey, as a case study. Employing the DeepForest Python package, we utilize high-resolution (7cm) aerial imagery to detect and map the city's tree population accurately. The results showcase an impressive accuracy rate of 80.87%, demonstrating the potential of deep learning in urban forestry applications and contributing to effective urban planning. The information generated from this study is crucial for conserving urban green spaces, enhancing resilience to climate change, and supporting urban biodiversity. While this research is focused on Mersin, the methods employed are globally adaptable, laying a foundation for further refinement and potential identification of different tree species in future work. This investigation highlights the transformative role of advanced technology in fostering sustainable urban environments.\",\"PeriodicalId\":285163,\"journal\":{\"name\":\"Türkiye Coğrafi Bilgi Sistemleri Dergisi\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Türkiye Coğrafi Bilgi Sistemleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56130/tucbis.1307926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Türkiye Coğrafi Bilgi Sistemleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56130/tucbis.1307926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究以土耳其Mersin的一个社区为例,研究了深度学习算法和高分辨率航空图像在城市地区单个树木检测中的应用。使用DeepForest Python包,我们利用高分辨率(7厘米)的航空图像来准确地检测和绘制城市的树木数量。结果显示出令人印象深刻的准确率为80.87%,显示了深度学习在城市林业应用中的潜力,并有助于有效的城市规划。本研究产生的信息对于保护城市绿地、增强对气候变化的适应能力和支持城市生物多样性至关重要。虽然本研究的重点是Mersin,但所采用的方法具有全球适应性,为今后工作中进一步细化和潜在鉴定不同树种奠定了基础。这项调查强调了先进技术在促进可持续城市环境中的变革作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding Nature's Patterns: An Innovative Approach to Tree Detection Using Deep Learning and High-Resolution Aerial Imagery
This study investigates the application of deep learning algorithms and high-resolution aerial imagery for individual tree detection in urban areas, using a neighborhood in Mersin, Turkey, as a case study. Employing the DeepForest Python package, we utilize high-resolution (7cm) aerial imagery to detect and map the city's tree population accurately. The results showcase an impressive accuracy rate of 80.87%, demonstrating the potential of deep learning in urban forestry applications and contributing to effective urban planning. The information generated from this study is crucial for conserving urban green spaces, enhancing resilience to climate change, and supporting urban biodiversity. While this research is focused on Mersin, the methods employed are globally adaptable, laying a foundation for further refinement and potential identification of different tree species in future work. This investigation highlights the transformative role of advanced technology in fostering sustainable urban environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信