用平坦的常数耦合和纯曲率网络构建子流形代数几何方法

Евгений Владимирович Глухов, Evgeniy Vladimirovich Glukhov, Олег Иванович Мохов, Олег Иванович Мохов
{"title":"用平坦的常数耦合和纯曲率网络构建子流形代数几何方法","authors":"Евгений Владимирович Глухов, Evgeniy Vladimirovich Glukhov, Олег Иванович Мохов, Олег Иванович Мохов","doi":"10.4213/faa3744","DOIUrl":null,"url":null,"abstract":"В данной статье предложено обобщение алгебро-геометрической конструкции Кричевера построения ортогональных систем координат в плоском пространстве. В теории интегрируемых систем гидродинамического типа фундаментальную роль играют также ортогональные координаты в некоторых специальных неплоских пространствах. Важнейший класс таких пространств задается метриками подмногообразий в плоском пространстве с плоской нормальной связностью и голономной сетью линий кривизны, определяющей ортогональные координаты на подмногообразии. Предложена конструкция построения таких подмногообразий по алгебро-геометрическим данным. Приведены явные примеры.","PeriodicalId":332168,"journal":{"name":"Функциональный анализ и его приложения","volume":"14 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Об алгебро-геометрических методах построения подмногообразий с плоской нормальной связностью и голономной сетью линий кривизны\",\"authors\":\"Евгений Владимирович Глухов, Evgeniy Vladimirovich Glukhov, Олег Иванович Мохов, Олег Иванович Мохов\",\"doi\":\"10.4213/faa3744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В данной статье предложено обобщение алгебро-геометрической конструкции Кричевера построения ортогональных систем координат в плоском пространстве. В теории интегрируемых систем гидродинамического типа фундаментальную роль играют также ортогональные координаты в некоторых специальных неплоских пространствах. Важнейший класс таких пространств задается метриками подмногообразий в плоском пространстве с плоской нормальной связностью и голономной сетью линий кривизны, определяющей ортогональные координаты на подмногообразии. Предложена конструкция построения таких подмногообразий по алгебро-геометрическим данным. Приведены явные примеры.\",\"PeriodicalId\":332168,\"journal\":{\"name\":\"Функциональный анализ и его приложения\",\"volume\":\"14 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Функциональный анализ и его приложения\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/faa3744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Функциональный анализ и его приложения","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/faa3744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文概括了克里切弗在平面空间中建立正交坐标系的代数几何结构。在集成流体动力学系统理论中,一些非平坦空间中的正交坐标也起着基本作用。这些空间中最重要的类是由平面空间的子多样性度量、平坦的正常耦合和全曲线网络决定子流形的正交坐标。在代数几何数据中提出了这种子流形的构造。这里有一些明显的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Об алгебро-геометрических методах построения подмногообразий с плоской нормальной связностью и голономной сетью линий кривизны
В данной статье предложено обобщение алгебро-геометрической конструкции Кричевера построения ортогональных систем координат в плоском пространстве. В теории интегрируемых систем гидродинамического типа фундаментальную роль играют также ортогональные координаты в некоторых специальных неплоских пространствах. Важнейший класс таких пространств задается метриками подмногообразий в плоском пространстве с плоской нормальной связностью и голономной сетью линий кривизны, определяющей ортогональные координаты на подмногообразии. Предложена конструкция построения таких подмногообразий по алгебро-геометрическим данным. Приведены явные примеры.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信