基于人工智能的资产管理

J. Mattioli, Paolo Perico, Pierre-Olivier Robic
{"title":"基于人工智能的资产管理","authors":"J. Mattioli, Paolo Perico, Pierre-Olivier Robic","doi":"10.1109/SoSE50414.2020.9130505","DOIUrl":null,"url":null,"abstract":"In a System Engineering perspective, asset management (AM) is related to a subset of techniques focusing on the in-service phase, aligned with product life-cycle management discipline. Today, within AM solution market, the integration of Artificial Intelligence (AI) technics above traditional entreprise solution is a key trend. This paper is focusing on how symbolic AI and data driven AI could improve some issues of the AM life cycle, in particular in asset acquisition, performance analysis and forecasting, asset monitoring, predictive and prescriptive maintenance, supply chain optimisation including spare parts management…","PeriodicalId":121664,"journal":{"name":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Artificial Intelligence based Asset Management\",\"authors\":\"J. Mattioli, Paolo Perico, Pierre-Olivier Robic\",\"doi\":\"10.1109/SoSE50414.2020.9130505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a System Engineering perspective, asset management (AM) is related to a subset of techniques focusing on the in-service phase, aligned with product life-cycle management discipline. Today, within AM solution market, the integration of Artificial Intelligence (AI) technics above traditional entreprise solution is a key trend. This paper is focusing on how symbolic AI and data driven AI could improve some issues of the AM life cycle, in particular in asset acquisition, performance analysis and forecasting, asset monitoring, predictive and prescriptive maintenance, supply chain optimisation including spare parts management…\",\"PeriodicalId\":121664,\"journal\":{\"name\":\"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoSE50414.2020.9130505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference of System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoSE50414.2020.9130505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

从系统工程的角度来看,资产管理(AM)与专注于服务阶段的技术子集相关,与产品生命周期管理规程保持一致。如今,在增材制造解决方案市场中,人工智能(AI)技术在传统企业解决方案之上的集成是一个关键趋势。本文关注的是符号人工智能和数据驱动的人工智能如何改善增材制造生命周期的一些问题,特别是在资产获取、绩效分析和预测、资产监控、预测性和规范性维护、供应链优化(包括备件管理)等方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence based Asset Management
In a System Engineering perspective, asset management (AM) is related to a subset of techniques focusing on the in-service phase, aligned with product life-cycle management discipline. Today, within AM solution market, the integration of Artificial Intelligence (AI) technics above traditional entreprise solution is a key trend. This paper is focusing on how symbolic AI and data driven AI could improve some issues of the AM life cycle, in particular in asset acquisition, performance analysis and forecasting, asset monitoring, predictive and prescriptive maintenance, supply chain optimisation including spare parts management…
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信