{"title":"四元数神经网络自适应补偿器在计算转矩控制中的应用","authors":"Kazuhiko Takahashi","doi":"10.1109/IRC.2020.00084","DOIUrl":null,"url":null,"abstract":"Model-based control such as computed torque control is frequently employed to ensure the accurate control of a robot manipulator. However, in some cases control performance is not satisfactory due to unmodeled nonlinearities or dynamics. To overcome this issue, this study investigates how using a quaternion neural network can adaptively compensate for the computed torque control. The control system consists of the quaternion neural network, feedforward model and feedback controller, resulting in a feedback error learning scheme utilised for the training of the quaternion neural network with a backpropagation algorithm extended to quaternion numbers. In computational experiments, the trajectory control of a three-link robot manipulator is performed using the proposed control system. Simulation results confirm the effectiveness of the quaternion neural network in practical control applications.","PeriodicalId":232817,"journal":{"name":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on Adaptive Compensator with Quaternion Neural Network in Computed Torque Control\",\"authors\":\"Kazuhiko Takahashi\",\"doi\":\"10.1109/IRC.2020.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based control such as computed torque control is frequently employed to ensure the accurate control of a robot manipulator. However, in some cases control performance is not satisfactory due to unmodeled nonlinearities or dynamics. To overcome this issue, this study investigates how using a quaternion neural network can adaptively compensate for the computed torque control. The control system consists of the quaternion neural network, feedforward model and feedback controller, resulting in a feedback error learning scheme utilised for the training of the quaternion neural network with a backpropagation algorithm extended to quaternion numbers. In computational experiments, the trajectory control of a three-link robot manipulator is performed using the proposed control system. Simulation results confirm the effectiveness of the quaternion neural network in practical control applications.\",\"PeriodicalId\":232817,\"journal\":{\"name\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Fourth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2020.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2020.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remarks on Adaptive Compensator with Quaternion Neural Network in Computed Torque Control
Model-based control such as computed torque control is frequently employed to ensure the accurate control of a robot manipulator. However, in some cases control performance is not satisfactory due to unmodeled nonlinearities or dynamics. To overcome this issue, this study investigates how using a quaternion neural network can adaptively compensate for the computed torque control. The control system consists of the quaternion neural network, feedforward model and feedback controller, resulting in a feedback error learning scheme utilised for the training of the quaternion neural network with a backpropagation algorithm extended to quaternion numbers. In computational experiments, the trajectory control of a three-link robot manipulator is performed using the proposed control system. Simulation results confirm the effectiveness of the quaternion neural network in practical control applications.