A. Vandooren, L. Witters, E. Vecchio, E. Kunnen, G. Hellings, L. Peng, F. Inoue, W. Li, N. Waldron, D. Mocuta, N. Collaert
{"title":"双栅无硅结n型晶体管,用于使用3D顺序集成的高性能Cu-BEOL兼容应用","authors":"A. Vandooren, L. Witters, E. Vecchio, E. Kunnen, G. Hellings, L. Peng, F. Inoue, W. Li, N. Waldron, D. Mocuta, N. Collaert","doi":"10.1109/S3S.2017.8309234","DOIUrl":null,"url":null,"abstract":"We are proposing a double gate junction-less device with a processing temperature compatible with state-of-the-art dense low k dielectric back-end of line copper process. The thermal stability of the back-end of line process was studied, showing no degradation for an anneal temperature up to 500°C 1h. Using wafer bonding, a crystalline silicon layer can be transferred onto a carrier wafer followed by top device processing at low temperature with a gate first approach as well as direct W contacts with Ti/TiN barrier layer. To avoid dopant activation using high temperature anneal (spike), junction-less devices are used, where the uniform channel dopant implantation and activation can be done prior to the layer transfer.","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Double-gate Si junction-less n-type transistor for high performance Cu-BEOL compatible applications using 3D sequential integration\",\"authors\":\"A. Vandooren, L. Witters, E. Vecchio, E. Kunnen, G. Hellings, L. Peng, F. Inoue, W. Li, N. Waldron, D. Mocuta, N. Collaert\",\"doi\":\"10.1109/S3S.2017.8309234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are proposing a double gate junction-less device with a processing temperature compatible with state-of-the-art dense low k dielectric back-end of line copper process. The thermal stability of the back-end of line process was studied, showing no degradation for an anneal temperature up to 500°C 1h. Using wafer bonding, a crystalline silicon layer can be transferred onto a carrier wafer followed by top device processing at low temperature with a gate first approach as well as direct W contacts with Ti/TiN barrier layer. To avoid dopant activation using high temperature anneal (spike), junction-less devices are used, where the uniform channel dopant implantation and activation can be done prior to the layer transfer.\",\"PeriodicalId\":333587,\"journal\":{\"name\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2017.8309234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double-gate Si junction-less n-type transistor for high performance Cu-BEOL compatible applications using 3D sequential integration
We are proposing a double gate junction-less device with a processing temperature compatible with state-of-the-art dense low k dielectric back-end of line copper process. The thermal stability of the back-end of line process was studied, showing no degradation for an anneal temperature up to 500°C 1h. Using wafer bonding, a crystalline silicon layer can be transferred onto a carrier wafer followed by top device processing at low temperature with a gate first approach as well as direct W contacts with Ti/TiN barrier layer. To avoid dopant activation using high temperature anneal (spike), junction-less devices are used, where the uniform channel dopant implantation and activation can be done prior to the layer transfer.