Hanning Chen, Xiaodan Liang, Weitao Yuan, Liling Sun, Maowei He, Nuo Ji
{"title":"根系生长实现全局优化","authors":"Hanning Chen, Xiaodan Liang, Weitao Yuan, Liling Sun, Maowei He, Nuo Ji","doi":"10.1109/ICINFA.2015.7279634","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel bio-inspired optimizer, namely the root system growth algorithm (RSGA), which adopts the root foraging, memory and communication, and auxin-regulated mechanisms of the root system. When tested against benchmark functions, the RSGA markedly outperforms the CMA-ES, PSO, GA, and DE algorithms in terms of accuracy, robustness and convergence speed.","PeriodicalId":186975,"journal":{"name":"2015 IEEE International Conference on Information and Automation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root system growth for global optimization\",\"authors\":\"Hanning Chen, Xiaodan Liang, Weitao Yuan, Liling Sun, Maowei He, Nuo Ji\",\"doi\":\"10.1109/ICINFA.2015.7279634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a novel bio-inspired optimizer, namely the root system growth algorithm (RSGA), which adopts the root foraging, memory and communication, and auxin-regulated mechanisms of the root system. When tested against benchmark functions, the RSGA markedly outperforms the CMA-ES, PSO, GA, and DE algorithms in terms of accuracy, robustness and convergence speed.\",\"PeriodicalId\":186975,\"journal\":{\"name\":\"2015 IEEE International Conference on Information and Automation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2015.7279634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2015.7279634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposed a novel bio-inspired optimizer, namely the root system growth algorithm (RSGA), which adopts the root foraging, memory and communication, and auxin-regulated mechanisms of the root system. When tested against benchmark functions, the RSGA markedly outperforms the CMA-ES, PSO, GA, and DE algorithms in terms of accuracy, robustness and convergence speed.