基于模糊推理系统的失效模式与影响分析(FMEA)方法

K. Tay
{"title":"基于模糊推理系统的失效模式与影响分析(FMEA)方法","authors":"K. Tay","doi":"10.1109/SoCPaR.2009.72","DOIUrl":null,"url":null,"abstract":"Failure Mode and Effect Analysis (FMEA) is a popular problem prevention methodology. It utilizes a Risk Priority Number (RPN) model to evaluate the risk associated to each failure mode. The conventional RPN model is simple, but, its accuracy is argued. A fuzzy RPN model is proposed as an alternative to the conventional RPN. The fuzzy RPN model allows the relation between the RPN score and Severity, Occurrence and Detect ratings to be of non-linear relationship, and it maybe a more realistic representation. In this paper, the efficiency of the fuzzy RPN model in order to allow valid and meaningful comparisons among different failure modes in FMEA to be made is investigated. It is suggested that the fuzzy RPN should be subjected to certain theoretical properties of a length function e.g. monotonicity, sub-additivity and etc. In this paper, focus is on the monotonicity property. The monotonicity property for the fuzzy RPN is firstly defined, and a sufficient condition for a FIS to be monotone is applied to the fuzzy RPN model. This is an easy and reliable guideline to construct the fuzzy RPN in practice. Case studies relating to semiconductor industry are then presented.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On Fuzzy Inference System Based Failure Mode and Effect Analysis (FMEA) Methodology\",\"authors\":\"K. Tay\",\"doi\":\"10.1109/SoCPaR.2009.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Failure Mode and Effect Analysis (FMEA) is a popular problem prevention methodology. It utilizes a Risk Priority Number (RPN) model to evaluate the risk associated to each failure mode. The conventional RPN model is simple, but, its accuracy is argued. A fuzzy RPN model is proposed as an alternative to the conventional RPN. The fuzzy RPN model allows the relation between the RPN score and Severity, Occurrence and Detect ratings to be of non-linear relationship, and it maybe a more realistic representation. In this paper, the efficiency of the fuzzy RPN model in order to allow valid and meaningful comparisons among different failure modes in FMEA to be made is investigated. It is suggested that the fuzzy RPN should be subjected to certain theoretical properties of a length function e.g. monotonicity, sub-additivity and etc. In this paper, focus is on the monotonicity property. The monotonicity property for the fuzzy RPN is firstly defined, and a sufficient condition for a FIS to be monotone is applied to the fuzzy RPN model. This is an easy and reliable guideline to construct the fuzzy RPN in practice. Case studies relating to semiconductor industry are then presented.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

失效模式与影响分析(FMEA)是一种流行的问题预防方法。它利用风险优先级数(RPN)模型来评估与每种故障模式相关的风险。传统的RPN模型简单,但其精度存在争议。提出了一种模糊RPN模型作为传统RPN的替代方案。模糊RPN模型允许RPN评分与严重性、发生率和检测等级之间的关系为非线性关系,它可能是一个更现实的表示。本文研究了模糊RPN模型的有效性,以便对FMEA中不同失效模式进行有效和有意义的比较。提出模糊RPN应符合长度函数的单调性、子可加性等理论性质。本文的重点是讨论单调性。首先定义了模糊RPN模型的单调性,并对模糊RPN模型给出了FIS是单调的充分条件。在实际应用中,这是一种简便可靠的模糊RPN构造方法。然后介绍了与半导体行业相关的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fuzzy Inference System Based Failure Mode and Effect Analysis (FMEA) Methodology
Failure Mode and Effect Analysis (FMEA) is a popular problem prevention methodology. It utilizes a Risk Priority Number (RPN) model to evaluate the risk associated to each failure mode. The conventional RPN model is simple, but, its accuracy is argued. A fuzzy RPN model is proposed as an alternative to the conventional RPN. The fuzzy RPN model allows the relation between the RPN score and Severity, Occurrence and Detect ratings to be of non-linear relationship, and it maybe a more realistic representation. In this paper, the efficiency of the fuzzy RPN model in order to allow valid and meaningful comparisons among different failure modes in FMEA to be made is investigated. It is suggested that the fuzzy RPN should be subjected to certain theoretical properties of a length function e.g. monotonicity, sub-additivity and etc. In this paper, focus is on the monotonicity property. The monotonicity property for the fuzzy RPN is firstly defined, and a sufficient condition for a FIS to be monotone is applied to the fuzzy RPN model. This is an easy and reliable guideline to construct the fuzzy RPN in practice. Case studies relating to semiconductor industry are then presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信