基于cnn的面积高效物理不可克隆函数的设计:权衡与优化

T. Addabbo, A. Fort, Riccardo Moretti, M. Mugnaini, Hadis Takaloo, V. Vignoli
{"title":"基于cnn的面积高效物理不可克隆函数的设计:权衡与优化","authors":"T. Addabbo, A. Fort, Riccardo Moretti, M. Mugnaini, Hadis Takaloo, V. Vignoli","doi":"10.1109/ECCTD49232.2020.9218316","DOIUrl":null,"url":null,"abstract":"We discuss the design of an area-efficient CMOS analog core-cell implementing a PUF derived from a two-neurons Cellular Neural Network (CNN). The study is based on both theoretical modeling and numerical simulations, proposing circuit solutions in which the area consumption is strongly reduced by eliminating state capacitors and relying on distributed parasitic capacitances only.","PeriodicalId":336302,"journal":{"name":"2020 European Conference on Circuit Theory and Design (ECCTD)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of Area-Efficient Physical Unclonable Functions Derived From CNNs: Trade-Offs and Optimization\",\"authors\":\"T. Addabbo, A. Fort, Riccardo Moretti, M. Mugnaini, Hadis Takaloo, V. Vignoli\",\"doi\":\"10.1109/ECCTD49232.2020.9218316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the design of an area-efficient CMOS analog core-cell implementing a PUF derived from a two-neurons Cellular Neural Network (CNN). The study is based on both theoretical modeling and numerical simulations, proposing circuit solutions in which the area consumption is strongly reduced by eliminating state capacitors and relying on distributed parasitic capacitances only.\",\"PeriodicalId\":336302,\"journal\":{\"name\":\"2020 European Conference on Circuit Theory and Design (ECCTD)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 European Conference on Circuit Theory and Design (ECCTD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD49232.2020.9218316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD49232.2020.9218316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们讨论了一种面积高效的CMOS模拟核心单元的设计,实现了来自双神经元细胞神经网络(CNN)的PUF。该研究基于理论建模和数值模拟,提出了通过消除状态电容和仅依赖分布式寄生电容来大大降低面积消耗的电路解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Area-Efficient Physical Unclonable Functions Derived From CNNs: Trade-Offs and Optimization
We discuss the design of an area-efficient CMOS analog core-cell implementing a PUF derived from a two-neurons Cellular Neural Network (CNN). The study is based on both theoretical modeling and numerical simulations, proposing circuit solutions in which the area consumption is strongly reduced by eliminating state capacitors and relying on distributed parasitic capacitances only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信