{"title":"相干耦合量子点吸收量子测量","authors":"G. Milburn, H. Sun, B. Upcroft","doi":"10.1071/PH00034","DOIUrl":null,"url":null,"abstract":"We propose an absorptive measurement scheme via coupled quantum dots based on studies of the quantum dynamics of coherently coupled dots. The system is described through a Markov master equation that is related to a measurable quantity, the current. We analyse the measurement configuration and calculate the correlations and noise spectra beyond the adiabatic approximation.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Absorptive Quantum Measurements via Coherently Coupled Quantum Dots\",\"authors\":\"G. Milburn, H. Sun, B. Upcroft\",\"doi\":\"10.1071/PH00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an absorptive measurement scheme via coupled quantum dots based on studies of the quantum dynamics of coherently coupled dots. The system is described through a Markov master equation that is related to a measurable quantity, the current. We analyse the measurement configuration and calculate the correlations and noise spectra beyond the adiabatic approximation.\",\"PeriodicalId\":170873,\"journal\":{\"name\":\"Australian Journal of Physics\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/PH00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Absorptive Quantum Measurements via Coherently Coupled Quantum Dots
We propose an absorptive measurement scheme via coupled quantum dots based on studies of the quantum dynamics of coherently coupled dots. The system is described through a Markov master equation that is related to a measurable quantity, the current. We analyse the measurement configuration and calculate the correlations and noise spectra beyond the adiabatic approximation.